Ammonia is formed by a reaction between hydrogen and nitrogen as shown by the equation below.
N2(g) + 3H2(g) = 2NH3(g)
1 mole of ammonia contains 17 g
Therefore 10.78 g of ammonia are equivalent to 10.78/17 = 0.6341 moles
The mole ratio of hydrogen to ammonia is 3 : 2
Therefore, moles of hydrogen used will be 0.6341 × 3/2 = 0.9512 moles
1 mole of hydrogen is equivalent to 2 g
Thus, the mas of hydrogen will be 0.9512 moles × 2 = 1.9023 g
This problem is providing two reduction-oxidation (redox) reactions in which the oxidized and reduced species can be identified by firstly setting the oxidation number of each element:
Reaction 1: 2K⁺I⁻ + H₂⁺O₂⁻ ⇒2K⁺O⁻²H⁺ + I₂⁰
Reaction 2: Cl₂⁰ + H₂⁰ ⇒ 2H⁺CI⁻
Next, we can see that iodine is being oxidized and oxygen reduced in reaction #1 and chlorine is being reduced and hydrogen oxidized in reaction #2 because the oxidized species increase the oxidation number whereas the reduced ones decrease it.
In such a way, the correct choice is C.
Learn more:
Hi Sydney!
I can't draw in this question, but there is a picture showing this phase for you to follow when you draw it.
Hope This Helps :)
Yes, it has many natural acids. However, the biggest and most prominent acid is the organic acid, malic acid.