Because the nucleic acid is damaged, so how is it going to produce anything without a miracle?
Nucleic acids are the main information-carrying molecules of the cell<span>, and, by directing the process of </span>protein synthesis<span>, they determine the inherited characteristics of every living thing.
</span>
So if that is damaged then, of course, you would be out of luck.
Answer:
a. NH3 is limiting reactant.
b. 44g of NO
c. 40g of H2O
Explanation:
Based on the reaction:
4NH₃(g) + 5O₂(g) → 4NO(g) + 6H₂O(l)
4 moles of ammonia reacts with 5 moles of oxygen to produces 4 moles of NO and 6 moles of water.
To find limiting reactant we need to find the moles of each reactant and using the balanced equation find which reactant will be ended first. Then, with limiting reactant we can find the moles of each reactant and its mass:
<em>a. </em><em>Moles NH3 -Molar mass. 17.031g/mol-</em>
25g NH3*(1mol/17.031g) = 1.47moles NH3
Moles O2 = 4 moles
For a complete reaction of 4 moles of O2 are required:
4mol O2 * (4mol NH3 / 5mol O2) = 3.2 moles of NH3.
As there are just 1.47 moles, NH3 is limiting reactant
b. Moles NO:
1.47moles NH3 * (4mol NO/4mol NH3) = 1.47mol NO
Mass NO -Molar mass: 30.01g/mol-
1.47mol NO * (30.01g/mol) = 44g of NO
c. Moles H2O:
1.47moles NH3 * (6mol H2O/4mol NH3) = 2.205mol H2O
Mass H2O -Molar mass: 18.01g/mol-
2.205mol H2O * (18.01g/mol) = 40g of H2O
Answer: B) Particles can be filtered from a suspension.
Explanation: Colloids are solutions with particle size intermediate between true solutions and suspensions. They exhibit tyndall effect that is scattering of light.
Suspensions have large sized particles which settle when left undisturbed for sometime and thus can be filtered off easily.
The particle size in colloids is less and hence they do not settle under the effect of gravity.
A solution can be homogeneous in which the composition is uniform or heterogeneous in which is the composition is not uniform.
Ammonium hydroxide aka ammonia is a colorless gas that smells awful.... ammonia contains nitrogen and hydrogen.... and also ammonia is used as a lifting gas, which means it cans be used to lift hot air balloons.... lol that was just a weird fact..... but have an amazing day/night and god bless u!
Answer:
Cr (HSO4)3
Explanation:
its molecular weight is 343.20 g/mol
its molecular formula can also be written as CrH3O12S3
molar mass of Cr (HSO4)3 can be calculated by following method;
atomic mass of Cr = 51.9961 u
atomic mass of H = 1 u
atomic mass of S = 32.065 u
atomic mass of O = 16 u
molar mass of Cr(HSO4)3 = 51.9961+ 1.00784×3 + 32.065×3 + 15.999×12
molar mass of Cr(HSO4)3 =51.9961+3.02352+96.195+ 191.988
molar mass of Cr(HSO4)3 = 343.20 g/mol