D.
The reading between 7N and 8N would have to be 7.5N. Answers A and B are much to small and answer C is way to big.
Answer:
W = 290.7 dynes*cm
Explanation:
d = 1/5 cm = 0.2 cm
The force is in function of the depth x:
F(x) = 1000 * (1 + 2*x)^2
We can expand that as:
F(x) = 1000 * (1 + 4*x + 4x^2)
F(x) = 1000 + 4000*x + 4000*x^2
Work is defined as
W = F * d
Since we have non constant force we integrate

W = [1000*x + 2000*x^2 + 1333*X^3] evaluated between 0 and 0.2
W = 1000*0.2 + 2000*0.2^2 + 1333*0.2^3 - 1000*0 - 2000*0^2 - 1333*0^3
W = 200 + 80 + 10.7 = 290.7 dynes*cm
Answer:
Here's what I got:
Let's assume that N and E are + directions while S and W are - directions.
Wind is blowing from SW; thus, it is blowing towards NE (or at 45 deg N of E).
Dividing the wind's speed into components:y-component: +70.71 km/h; x-component: +70.71 km/h
Dividing the airplane's speed into components:y-component: -600 km/h; x-component: 0 km/h
Adding the components to get the resulting components:y-component: -529.29 km/h; x-component: +70.71
Using the Pythagorean Theorem to find the resulting speed:v^2 = y^2 + x^2 so v = 533.99 km/h
To find the angle of direction, use arctan (y/x):arctan (529.29/70.71) = 82.39 deg
ANSWER: velocity = 533.99 km/h at 82.39 deg S of E
Explanation:
Answer:
3.28 cm
Explanation:
To solve this problem, you need to know that a magnetic field B perpendicular to the movement of a proton that moves at a velocity v will cause a Force F experimented by the particle that is orthogonal to both the velocity and the magnetic Field. When a particle experiments a Force orthogonal to its velocity, the path it will follow will be circular. The radius of said circle can be calculated using the expression:
r = 
Where m is the mass of the particle, v is its velocity, q is its charge and B is the magnitude of the magnetic field.
The mass and charge of a proton are:
m = 1.67 * 10^-27 kg
q = 1.6 * 10^-19 C
So, we get that the radius r will be:
r =
= 0.0328 m, or 3.28 cm.
The distance between two basket ball sized aluminium balls is 9714 m.
Explanation:
Coulomb's law, or Coulomb's inverse-square law, is an experimental law of physics that quantifies the amount of force between two stationary, electrically charged particles. The electric force between charged bodies at rest is conventionally called electrostatic force or Coulomb force .
Coulomb's law formula => F = (k * Qb1 * Qb2)/r²
Given data :-
charge on ball 1 Qb1 = 6C
charge on ball 2 Qb2 = 14C
Force exerted F = 8000 N
k = 8.988 x 10^9 Nm²C−²(coulomb's constant).
substituting given values in the coulomb's formula
8000 = (( 8.988 x 10^9)*6*14)/r²
shifting r and 8000 to other sides
r² = (756 * 10^9)/8000
r = 9714 m.
Therefore the distance between two balls is r = 9714 m.