I am pretty sure the answer is C.
Tension in the rope due to applied force will be given as

angle of applied force with horizontal is 37 degree
displacement along the floor = 6.1 m
so here we can use the formula of work done

now we can plug in all values above


So here work done to pull is given by 691.8 J
Answer:
i really thought that said hater
Answer:
The final velocity of the car A is -1.053 m/s.
Explanation:
For an elastic collision both the kinetic energy and the momentum of the system are conserved.
Let us call
= mass of car A;
= the initial velocity of car A;
= the final velocity of car A;
and
= mass of car B;
= the initial velocity of car B;
= the final velocity of car B.
Then, the law of conservation of momentum demands that

And the conservation of kinetic energy says that

These two equations are solved for final velocities
and
to give


by putting in the numerical values of the variables we get


and


Thus, the final velocity of the car A is -1.053 m/s and of car B is 3.49 m/s.