1mol aluminium chloride gives 1mol aluminium and 3mol chloride
density equals mass divided by volume
d=m/v
m=v*d
=78.3*2.7
=211.41grams
1) Zn + 2 HCl = ZnCl2 + H2 ( <span>single replacement )
2) </span>2 NaCl + F2 = 2 NaF + Cl2 ( <span>single replacement )
3) </span>2 AlBr3 + 3 K2SO4 = 6 KBr + Al2(SO4)3 ( <span>double replacement )
4) </span>2 K + MgBr2 = 2 KBr + Mg ( <span>single replacement )
Answer 3
hope this helps!</span>
Explanation:
The given data is:
The half-life of gentamicin is 1.5 hrs.
The reaction follows first-order kinetics.
The initial concentration of the reactants is 8.4 x 10-5 M.
The concentration of reactant after 8 hrs can be calculated as shown below:
The formula of the half-life of the first-order reaction is:

Where k = rate constant
t1/2=half-life
So, the rate constant k value is:

The expression for the rate constant is :

Substitute the given values and the k value in this formula to get the concentration of the reactant after time 8 hrs is shown below:

Answer: The concentration of reactant remains after 8 hours is 2.09x10^-6M.
Instruments
The specific type of instruments depends on the type of laboratory that you're working in: some labs for example use electron microscopes, others use mass spectrophotometers, others use multiplex biochemical analyzers, etc. But very broadly, the specialized tools we use in the laboratory are usually referred to as "instruments"
Here we will use the general formula of Nernst equation:
Ecell = E°Cell - [(RT/nF)] *㏑Q
when E cell is cell potential at non - standard state conditions
E°Cell is standard state cell potential = - 0.87 V
and R is a constant = 8.314 J/mol K
and T is the temperature in Kelvin = 73 + 273 = 346 K
and F is Faraday's constant = 96485 C/mole
and n is the number of moles of electron transferred in the reaction=2
and Q is the reaction quotient for the reaction
SO42-2(aq) + 4H+(aq) +2Br-(aq) ↔ Br2(aq) + SO2(g) +2H2O(l)
so by substitution :
0 = -0.87 - [(8.314*346K)/(2* 96485)*㏑Q → solve for Q
∴ Q = 4.5 x 10^-26