The correct answer as to which observation most likely indicates that only a chemical change has taken place would that the change cannot be reversed.
When it comes to changes in a system, it can either be:
- physical change
- chemical change
When a substance undergoes a physical change, the original version of the substance can be recovered. In other words, physical changes can be reversible.
When a substance undergoes a chemical change, the original version cannot be recovered because an entirely new product would have been formed. In other words, chemical changes are irreversible.
Thus, once a change becomes irreversible, such a change is said to be a chemical change.
More on chemical change can be found here: brainly.com/question/1161517
The number of grams of Ag2SO4 that could be formed is 31.8 grams
<u><em> calculation</em></u>
Balanced equation is as below
2 AgNO3 (aq) + H2SO4(aq) → Ag2SO4 (s) +2 HNO3 (aq)
- Find the moles of each reactant by use of mole= mass/molar mass formula
that is moles of AgNO3= 34.7 g / 169.87 g/mol= 0.204 moles
moles of H2SO4 = 28.6 g/98 g/mol =0.292 moles
- use the mole ratio to determine the moles of Ag2SO4
that is;
- the mole ratio of AgNo3 : Ag2SO4 is 2:1 therefore the moles of Ag2SO4= 0.204 x1/2=0.102 moles
- The moles ratio of H2SO4 : Ag2SO4 is 1:1 therefore the moles of Ag2SO4 = 0.292 moles
- AgNO3 is the limiting reagent therefore the moles of Ag2SO4 = 0.102 moles
<h3> finally find the mass of Ag2SO4 by use of mass=mole x molar mass formula</h3>
that is 0.102 moles x 311.8 g/mol= 31.8 grams
4 protons the number of proton has the same number of electron [which is the same as atomic number]
<span><span>Mn<span>O<span>2<span>(s)</span></span></span>+<span>H<span>2<span>(g)</span></span></span>→Mn<span>O<span>(s)</span></span>+<span>H2</span><span>O<span>(g)</span></span></span></span>
Answer:
In the chemical industry.