Answer:
A. 1.64 J
Explanation:
First of all, we need to find how many moles correspond to 1.4 mg of mercury. We have:

where
n is the number of moles
m = 1.4 mg = 0.0014 g is the mass of mercury
Mm = 200.6 g/mol is the molar mass of mercury
Substituting, we find

Now we have to find the number of atoms contained in this sample of mercury, which is given by:

where
n is the number of moles
is the Avogadro number
Substituting,
atoms
The energy emitted by each atom (the energy of one photon) is

where
h is the Planck constant
c is the speed of light
is the wavelength
Substituting,

And so, the total energy emitted by the sample is

I believe that your answer is going to be C. The ability to do work
Answer:
E/4
Explanation:
The formula for electric field of a very large (essentially infinitely large) plane of charge is given by:
E = σ/(2ε₀)
Where;
E is the electric field
σ is the surface charge density
ε₀ is the electric constant.
Formula to calculate σ is;
σ = Q/A
Where;
Q is the total charge of the sheet
A is the sheet's area.
We are told the elastic sheet is a square with a side length as d, thus ;
A = d²
So;
σ = Q/d²
Putting Q/d² for σ in the electric field equation to obtain;
E = Q/(2ε₀d²)
Now, we can see that E is inversely proportional to the square of d i.e.
E ∝ 1/d²
The electric field at P has some magnitude E. We now double the side length of the sheet to 2L while keeping the same amount of charge Q distributed over the sheet.
From the relationship of E with d, the magnitude of electric field at P will now have a quarter of its original magnitude which is;
E_new = E/4
Answer:
0.4rad/s²
Explanation:
Angular acceleration is the time rate of change of angular velocity . In SI units, it is measured in radians per second squared (rad/s²)
w1 = 4rad/s, w2 =2rad/s, t = 5sec, r = 0.30m
a = ∆w/t
a = (w2 - w1)/t
a = (2 - 4)/5 = -2/5 =
a = - 0.4rad/s²
The -ve sign indicates a deceleration in the motion
Good luck