Answer:
317.22
Explanation:
Given
Circular platform rotates ccw 93.1kg, radius 1.93 m, 0.945 rad/s
You 69.7kg, cw 1.01m/s, at r
Poodle 20.2 kg, cw 1.01/2 m/s, at r/2
Mutt 17.7 kg, 3r/4
You
Relative
ω = v/r
= 1.01/1.93
= 0.522
Actual
ω = 0.945 - 0.522
= 0.42
I = mr^2
= 69.7*1.93^2
= 259.6
L = Iω
= 259.6*0.42
= 109.4
Poodle
Relative
ω = (1.01/2)/(1.93/2)
= 0.5233
Actual
ω = 0.945- 0.5233
= 0.4217
I = m(r/2)^2
= 20.2*(1.93/2)^2
= 18.81
L = Iω
= 18.81*0.4217
= 7.93
Mutt
Actual
ω = 0.945
I = m(3r/4)^2
= 17.7(3*1.93/4)^2
= 37.08
L = Iω
= 37.08*0.945
= 35.04
Disk
I = mr^2/2
= 93.1(1.93)^2/2
= 173.39
L = Iω
= 173.39*0.945
= 163.85
Total
L = 109.4+ 7.93+ 36.04+ 163.85
= 317.22 kg m^2/s
1 watt = 1 joule/second
1 horsepower = 746 watts = 746 joule/second
(150 horsepower) x (746 watt/HP) x (1 joule/sec / watt) x (10 sec)
= (150 x 746 x 1 x 10) joule = 1,119,000 joules .
if correct plz mark brainly
Answer:
the number of lines is 526
Explanation:
The wavelength λ =600nm = 600 × 10⁻⁶ mm
The diffraction angle θ = 39°
Recall the expression for the relation between the wavelength, angle and central maxima distance.
Recall the expression for the relation between the wavelength, angle and central maxima distance.
Recall the expression for the relation between the wavelength, angle and central maxima distance.
relation between the wave length, angle and central maxima distance
d = nλ / sinθ
Here n = 2 for second order maxima and d is the distance
= 2(600 × 10⁻⁶) / sin 39°
= 1200 × 10⁻⁶ / 0.6293
= 1.9 × 10⁻³ mm
N = 1/d
= 1 / 1.9 × 10⁻³
= 526
The grating has a line density of 526 lines per millimeter
The choice that would best describe the word "tempo" would be letter A which states that it is "a pace of music or speed of beats per minute." In addition, a tempo is an important characteristic of music because it is the one who carries the emotions and feelings of the composer towards the music he/she makes.