Answer:
A. 2.82 eV
B. 439nm
C. 59.5 angstroms
Explanation:
A. To calculate the energy of the photon emitted you use the following formula:
(1)
n1: final state = 5
n2: initial state = 2
Where the energy is electron volts. You replace the values of n1 and n2 in the equation (1):

B. The energy of the emitted photon is given by the following formula:
(2)
h: Planck's constant = 6.62*10^{-34} kgm^2/s
c: speed of light = 3*10^8 m/s
λ: wavelength of the photon
You first convert the energy from eV to J:

Next, you use the equation (2) and solve for λ:

C. The radius of the orbit is given by:
(3)
where ao is the Bohr's radius = 2.380 Angstroms
You use the equation (3) with n=5:

hence, the radius of the atom in its 5-th state is 59.5 anstrongs
Answer: Electrons move around the nucleus in fixed orbits of equal levels of energy
Explanation:
The statement that accurately represents the arrangement of electrons in Bohr’s atomic model is that the electrons move around the nucleus in fixed orbits of equal levels of energy.
It should be noted that the electrons have a fixed energy level when they travel around the nucleus in with energies which varies for different levels.
Higher energy levels are depicted by the orbits that are far from the nucleus. There's emission of light when the electrons then return back to a lower energy level.
a ray of light is incident towards a plane mirror at an angles of 30degrees with the mirror surface. what will be the angles of reflection is 60degree.
Answer:
t = 0.657 s
Explanation:
First, let's use the appropiate equations to solve this:
V = √T/u
This expression gives us a relation between speed of a disturbance and the properties of the material, in this case, the rope.
Where:
V: Speed of the disturbance
T: Tension of the rope
u: linear density of the rope.
The density of the rope can be calculated using the following expression:
u = M/L
Where:
M: mass of the rope
L: Length of the rope.
We already have the mass and length, which is the distance of the rope with the supports. Replacing the data we have:
u = 2.31 / 10.4 = 0.222 kg/m
Now, replacing in the first equation:
V = √55.7/0.222 = √250.9
V = 15.84 m/s
Finally the time can be calculated with the following expression:
V = L/t ----> t = L/V
Replacing:
t = 10.4 / 15.84
t = 0.657 s
Answer:
See below
Explanation:
Normal force = m g cos 53 = 8 kg * 9.8 m/s^2 * cos 53 = 47.1823 N
no work is done by this force
Force friction = coeff friction * force normal = .4 * 47.1823 = 7.55 N
work of friction = 7.55 * 2 m = 15.1 j
Force Downplane = mg sin 53 = 62.61 N
work = 62.61 * 2 = 125.22 j
Net Force downplane = force downplane - force friction = 55.06 N
net Work = force * distance = 55.06 N * 2 M = 110.12 j