In metallurgy, non-ferrous metals are metals or alloys that do not contain iron in appreciable amounts. Generally more costly than ferrous metals, non-ferrous metals are used because of desirable properties such as low weight, higher conductivity, non-magnetic property or resistance to corrosion
A chemical engineer can clearly see from this kind of test if a substance stays in a system and builds up or if it just passes through.
<h3>What is a chemical engineer?</h3>
- Processes for manufacturing chemicals are created and designed by chemical engineers.
- To solve issues involving the manufacture or usage of chemicals, fuel, medications, food, and many other goods, chemical engineers use the concepts of chemistry, biology, physics, and math.
- A wide range of sectors, including petrochemicals and energy in general, polymers, sophisticated materials, microelectronics, pharmaceuticals, biotechnology, foods, paper, dyes, and fertilizers, have a significant demand for chemical engineers.
- Chemical engineering is undoubtedly difficult because it requires a lot of physics and math, as well as a significant number of exams at the degree level.
To learn more about chemical engineer, refer to:
brainly.com/question/23542721
#SPJ4
Answer: True
Explanation: Injector orifice is the factor which describes the size of the opening of the injector .There are different pattern and size of the opening for the injector which affects the mixture of the chemical substance that is used for the production of the energy that is known as propellant.
The pattern and size of the orifice will define the variation in the amount of energy that could be produced.Thus the statement given is true.
Answer:
Q=486.49 KJ/kg
Explanation:
Given that
V= 0.2 m³
At initial condition
P= 2 MPa
T=320 °C
Final condition
P= 2 MPa
T=540°C
From steam table
At P= 2 MPa and T=320 °C
h₁=3070.15 KJ/kg
At P= 2 MPa and T=540°C
h₂=3556.64 KJ/kg
So the heat transfer ,Q=h₂ - h₁
Q= 3556.64 - 3070.15 KJ/kg
Q=486.49 KJ/kg