Answer:
a) molarity of CCl3F = 1.12 × 10^-11 mol/dm³
Molarity of CCl2F2 = 2.20 × 10^-11 mol/dm³
B) molarity of CCL3F = 7.96 × 10 ^-13 mol/dm³
Molarity of CCl2F2 = 1.55 × 10^-12 mol/dm³
Explanation:
Using the ideal gas equation:
PV = nRT
Further explanations are found in the attachment below.
<span>XY4Z2-->Square planar (Electron domain geometry: Octahedral) sp3d2
XY4Z-->Seesaw (Electron domain geometry: Trigonal bipyramidal) sp3d
XY5Z-->Square pyramidal (Electron domain geometry: Octahedral) sp3d2
XY2Z3-->Linear (Electron domain geometry: Trigonal bipyramidal) sp3d
XY2Z-->Bent (Electron domain geometry: Trigonal planar) sp2
XY3Z-->Trigonal pyramidal (Electron domain geometry: Tetrahedral) sp3
XY2Z2-->Linear (Electron domain geometry: Tetrahedral) sp3
XY3Z2-->T shaped (Electron domain geometry: Trigonal bipryamidal) sp3d
XY2-->Linear (Electron domain geometry: Linear) sp
XY3 Trigonal planar (Electron geometry: Trigonal planar) sp2
XY4-->Tetrahedral (Electron domain geometry: tetrahedral) sp3
XY5-->Trigonal bipyramidal (Electron domain geometry: Trigonal bipyramidal) sp3d
XY6-->Octahedral (Electron domain geometry: Octahedral) sp3d2</span>
A force or a type of friction?
Force: Resistance--> If you go swimming, you feel the water pushing against you, making it harder to walk in water and even to swim unless you are doggy pattling or front strokes. Resistance is a force going against a solid object.
Friction: Fluid friction which is friction that occurs after a solid object travels through a liquid or gas
Answer:
The freezing point of the solution is - 4.39 °C.
Explanation:
We can solve this problem using the relation:
<em>ΔTf = (Kf)(m),</em>
where, ΔTf is the depression in the freezing point.
Kf is the molal freezing point depression constant of water = -1.86 °C/m,
density of water = 1 g/mL.
<em>So, the mass of 575 mL is 575 g = 0.575 kg.</em>
m is the molality of the solution (m = moles of solute / kg of solvent = (465 g / 342.3 g/mol)/(0.575 kg) = 2.36 m.
<em>∴ ΔTf = (Kf)(m</em>) = (-1.86 °C/m)(2.36 m) = <em>- 4.39 °C.</em>
<em>∵ The freezing point if water is 0.0 °C and it is depressed by - 4.39 °C.</em>
<em>∴ The freezing point of the solution is - 4.39 °C.</em>