The colored light emitted is energy and in order to emit energy the element should first obtain energy. The energy absorbed by the substance can be in the form of radiation, heat or electricity. Hope this answers the question. Have a nice day.
Answer:
= 7.57 × 104
(scientific notation)
= 7.57e4
(scientific e notation)
= 75.7 × 103
(engineering notation)
(thousand; prefix kilo- (k))
Explanation:
Just in case this is all of them
Answer:
V = 4/3 * 3.1416 * (37x10-10)3
V = 2.12x10-25 cm3
d = m/V
d = 1.67x10-24 / 2.12x10-25 = 7.87 g/cm3
The difference in temperature, let's convert F to ºC:
ºC = -80-32/1.8 = -62.22 ºC
dT = -92.6 + 62.2 = -30.4 ºC
CaCO3(s) ⟶ CaO(s)+CO2(s)
<span>
moles CaCO3: 1.31 g/100 g/mole CaCO3= 0.0131 </span>
<span>
From stoichiometry, 1 mole of CO2 is formed per 1 mole CaCO3,
therefore 0.0131 moles CO2 should also be formed.
0.0131 moles CO2 x 44 g/mole CO2 = 0.576 g CO2 </span>
Therefore:<span>
<span>% Yield: 0.53/.576 x100= 92 percent yield</span></span>
Answer is: atoms have the greatest kinetic energy in liquid iron (2,000°C).
The average kinetic energy of molecules depends on the temperature.
At high temperature(2,000°C), molecules of iron have greater kinetic energy than molecules of iron at low temperature (1,600°C, 65°C and 25°C)..
Read more on Brainly.com - brainly.com/question/8237916#readmore