Answer:
0.7 kg m²
Explanation:
F = force exerted applied by muscle in a professional boxer = 2551 N
r = length of lever arm = 3.15 cm = 0.0315 m
α = angular acceleration of the forearm = 115 rad/s²
I = moment of inertia of the boxer's forearm
τ = Torque applied by muscle in a professional boxer
Torque is given as
τ = I α = r F
Inserting the values
I (115) = (0.0315) (2551)
I = 0.7 kg m²
A magnetic field is produced by moving electric charges so B
Answer:
W = 8.01 × 10^(-17) [J]
Explanation:
To solve this problem we need to know the electron is a subatomic particle with a negative elementary electrical charge (-1,602 × 10-19 C), The expression to calculate the work is given by:
W = q*V
where:
q = charge = 1,602 × 10^(-19) [C]
V = voltage = 500 [V]
W = work [J]
W = 1,602 × 10^(-19) * 500
W = 8.01 × 10^(-17) [J]
Answer:
New Resistance = 0.5556 ohm
Explanation:
Resistance = resistivity * length /area
Here since resistivity and length are constant, we only need to see how the resistance increases or decreases with change in area.
New Area = pi * (3*D)^2 / 4
Old Area = pi * D^2 / 4
The ratio of new area / old area is :

Since area increases 9 times, and it is inversely proportional to resistance:
Resistance decreases by 9 times.
So, old resistance = Voltage / Current = 10 / 2 = 5 ohm
New Resistance = 5 / 9 = 0.5556 ohm (decreases by 9 times)