You forgot to add a photo.
<span>The current is 6 miles per hour.
Let's create a few equations:
Traveling with the current:
(18 + c)*t = 16
Traveling against the current:
(18 - c)*t = 8
Let's multiply the 2nd equation by 2
(18 - c)*t*2 = 16
Now subtract the 1st equation from the equation we just doubled.
(18 - c)*t*2 = 16
(18 + c)*t = 16
(18 - c)*t*2 - (18 + c)*t = 0
Divide both sides by t
(18 - c)*2 - (18 + c) = 0
Now solve for c
(18 - c)*2 - (18 + c) = 0
36 - 2c - 18 - c = 0
36 - 2c - 18 - c = 0
18 - 3c = 0
18 = 3c
6 = c
So the current is 6 mph.
Let's verify that.
(18 + 6)*t = 16
24*t = 16
t = 16/24 = 2/3
(18 - 6)*t = 8
12*t = 8
t = 8/12 = 2/3
And it's verified.</span>
So Neon ( Ne) is the correct answer.
Answer:
motion energy
Explanation:
motion wnergy is the sum of potential and kinetic energy
Answer:
a) x(t) = 10t + (2/3)*t^3
b) x*(0.1875) = 10.18 m
Explanation:
Note: The position of the horse is x = 2m. There is a typing error in the question. Otherwise, The solution to cubic equation holds a negative value of time t.
Given:
- v(t) = 10 + 2*t^2 (radar gun)
- x*(t) = 10 + 5t^2 + 3t^3 (our coordinate)
Find:
-The position x of horse as a function of time t in radar system.
-The position of the horse at x = 2m in our coordinate system
Solution:
- The position of horse according to radar gun:
v(t) = dx / dt = 10 + 2*t^2
- Separate variables:
dx = (10 + 2*t^2).dt
- Integrate over interval x = 0 @ t= 0
x(t) = 10t + (2/3)*t^3
- time @ x = 2 :
2 = 10t + (2/3)*t^3
0 = 10t + (2/3)*t^3 + 2
- solve for t:
t = 0.1875 s
- Evaluate x* at t = 0.1875 s
x*(0.1875) = 10 + 5(0.1875)^2 + 3(0.1875)^3
x*(0.1875) = 10.18 m