Answer:
Mechanical energy = 3.92 J
exactly 3.92 j
Explanation:
As we know that mechanical energy is sum of kinetic energy and potential energy of the system
so here we can say that mechanical energy is sum of kinetic energy of ball and its potential energy
Since ball is at rest so kinetic energy of the ball must be ZERO
Now for potential energy we know that

now we know
m = 0.2 kg
h = 2 m
now for potential ene'rgy


so mechanical energy is given as
Mechanical Energy = 3.92 + 0 = 3.92 J
Answer:
k_2 = 7.815 * 10^-3 s^-1
Explanation:
Given:
- rate constant of reaction k_1 = 7.8 * 10^-3 s^-1 @ T_1 = 25 C
- rate constant of reaction k_2 = ? @ T_2 = 75 C
- The activation energy E_a = 33.6 KJ/mol
- Gas constant R = 8.314472 KJ / mol . K
Find:
- rate of reaction k_2 @ T_2 = 75 C
Solution:
- we will use a combined form of Arrhenius equations that relates rate constants k as function of E_a and temperatures as follows:
k_2 = k_1 * e ^ [(E_a / R) * ( 1 / T_1 - 1 / T_2 )
- Evaluate k_2 = 7.8 * 10^-3* e^[(33.6 / 8.314472)*(1/298 -1/348)
- Hence, k_2 = 7.815 * 10^-3 s^-1
Answer: The correct option is (d)
lava flows built up from the ocean floor by multiple, summit and flank eruptions
Explanation:
Piles of baseltic lava flows built up from the ocean floor by multiple summit and flank eruptions describes seamounts and islands of the deep ocean basins.
Answer:
The Rutherford model was made by Ernest Rutherford, to describe a atom. That is a brief explanation
Explanation:
Answer:
F= 2569.6 X 4.65 = 11,948.64
*Multiply the mass and the acceleration to find the force
Explanation: