Answer:
Save the file and try to put stuff over the file. (kinda off like a picture)
Newton's subsequent law expresses that power is corresponding to what exactly is needed for an object of consistent mass to change its speed. This is equivalent to that item's mass increased by its speed increase.
We use Newtons, kilograms, and meters each second squared as our default units, albeit any proper units for mass (grams, ounces, and so forth) or speed (miles each hour out of every second, millimeters per second², and so on) could unquestionably be utilized also - the estimation is the equivalent notwithstanding.
Hence, the appropriate answer will be 399,532.
Net Force = 399532
Answer:
9.3m/s
Explanation:
Based on the law of conservation of momentum
Sum of momentum before collision = sum of momentum after collision
m1u1 +m2u2 = m1v1+m2v2
m1 = 8kg
u1 = 15.4m/s
m2 = 10kg
u2 = 0m/s(at rest)
v1 = 3.9m/s
Required
v2.
Substitute
8(15.4)+10(0) = 8(3.9)+10v2
123.2=31.2+10v2
123.2-31.2 = 10v2
92 = 10v2
v2 = 92/10
v2 = 9.2m/s
Hence the velocity of the 10.0 kg object after the collision is 9.2m/s
........................................................................................
Two atoms of the element bind to form dinitrogen and it’s a colourless and odorless diatomic gas with the formula N2. Also Dinitrogen forms up about 78% of earths atmosphere