The idea here is that you need to figure out how many moles of magnesium chloride,
MgCl
2
, you need to have in the target solution, then use this value to determine what volume of the stock solution would contain this many moles.
As you know, molarity is defined as the number of moles of solute, which in your case is magnesium chloride, divided by liters of solution.
c
=
n
V
So, how many moles of magnesium chloride must be present in the target solution?
c
=
n
V
⇒
n
=
c
⋅
V
n
=
0.158 M
⋅
250.0
⋅
10
−
3
L
=
0.0395 moles MgCl
2
Now determine what volume of the target solution would contain this many moles of magnesium chloride
c
=
n
V
⇒
V
=
n
c
V
=
0.0395
moles
3.15
moles
L
=
0.01254 L
Rounded to three sig figs and expressed in mililiters, the volume will be
V
=
12.5 mL
So, to prepare your target solution, use a
12.5-mL
sample of the stock solution and add enough water to make the volume of the total solution equal to
250.0 mL
.
This is equivalent to diluting the
12.5-mL
sample of the stock solution by a dilution factor of
20
.
Answer:
see explaination
Explanation:
We are given the (R)-3-bromo-2,3-dimethylpentane and asking to draw the curved arrow which is the showing the mechanism for first-order substitution and first-order elimination reactions. We know the formation of carbocation is the rate determining step in the first-order substitution and first-order elimination reactions.
So in the (R)-3-bromo-2,3-dimethylpentane there is –Br gets removed and formed the tertiary carbocation which is more stable, so the curved arrows in Box 1 to depict the flow of electrons and intermediate in Box 2.
Check attachment
Explanation:
Van der Waals interactions occur between any two or more molecules. They are caused by a fluctuation in electron density, as electrons are not actually fixed in a shell, but actually freely moving as a 'cloud of electron density'. This means that sometimes one end of a molecule can become more partially negatively charged as all electrons move to that side, and conversely it can attract the more partially positive end of a molecule (that has little electrons).
Hydrogen bonds only occur between molecules that contain oxygen, nitrogen and fluorine bonded to a hydrogen atom.
Hydrogen bonding is also the strongest intermolecular force there is, but not strong in comparison to ionic and covalent bonds. Therefore, hydrogen bonds are much stronger than Van der Waals forces. Hydrogen bonds only form if oxygen, nitrogen and fluorine are bonded to a hydrogen atom, as they have the greatest electronegativity differences (look at an electronegativity table), and when the overall molecule is polar (have unequal charges). This allows the molecule to be able to attract another molecule from one of the bonded atoms to a hydrogen atom.