Answer:
correct is d) a ’= g / 2
Explanation:
For this exercise let's use the kinematics equations
On earth
v = v₀ - a t
a = (v₀- v) / T
On planet X
v = v₀ - a' t’
a ’= (v₀-v) / 2T
Let's substitute the land values in plot X
a’= a / 2
Now let's use Newton's second law
W = ma
m g = m a
a = g
We substitute
a ’= g / 2
So we see that on planet X the acceleration is half the acceleration of Earth's gravity
In the given problem, we say various information's that are going to help us reach the ultimate answer to the question. Let us first write the information's that have been presented in front of us.
Mass of the car = 2000 kg
Velocity of the car = 25 m/s^2
Radius of the circle = 80 m
Now we already know the equation for calculating the centripetal force and that is
Centripetal Force = [mass * (velocity)^2]/Radius
= [2000 * (25)^2]/80
= (2000 * 625)/80
= 1250000/80
= 15625
So the centripetal force on the car is 15625 Newtons
A. An electron has far less mass than either a proton or neutron.
Answer:
15.8 N
Explanation:
The component in a given direction is the magnitude of the applied force, multiplied by the cosine of the angle between its application and the direction of interest.
The horizontal component is ...
(20 N)cos(38°) ≈ 15.8 N