Answer:
a. Planets move on elliptical orbits with the Sun at one focus.
Explanation:
Johannes Kepler was an astronomer who discovered that planets had elliptical orbits in the early 1600s (between 1609 and 1619).
The three (3) laws published by Kepler include;
I. The first law of planetary motion by Kepler states that, all the planets move in elliptical orbits around the Sun at a focus.
II. According to Kepler's second law of planetary motion, the speed of a planet is greatest when it is closest to the Sun.
Thus, the nearer (closer) a planet is to the Sun, the stronger would be the gravitational pull of the sun on the planet and consequently, the faster is the speed of the planet in terms motion.
III. The square of any planetary body's orbital period (P) is directly proportional to the cube of its orbit's semi-major axis.
Hence, one of Kepler's laws of planetary motion states that planets move on elliptical orbits with the Sun at one focus. This is his first law of planetary motion.
Answer:
We know that the force pulling the box in the positive x direction has a magnitude of m g sin 30 . Using Newtons Second Law, F = ma , we just need to solve for a :
ma=mgsin30
a=gsin30
=(10m/s2)(0.500)
=5m/s2
La cinemática permite encontrar la respuesta para la aceleracion del cuerpo en el cañón es:
a = 1,8 10⁶ m/s²
La cinemática estudia el movimiento de los cuerpos, buscando relaciones entre la posicion, la velocidad y la aceleración.
v² = v₀² + 2 a x
Donde v y v₀ son la velocidad actual e inicial, respectivamente, a es la aceleracion y x la distancia recorrida.
Indica que la longitud de cañon es x= 18 m la velocidad de salida es
v= 29000 km/h (
) (
s) = 8,055,56 m/s.
La velocidad inicial del proyectil es cero.
a =
a =
a = 1,8 10⁶ m/s²
En conclusión usando la cinemática podemos encontrarla respuesta para la aceleracion del cuerpo en el cañón es:
a = 1,8 10⁶ m/s²
Aprender mas aquí: brainly.com/question/19793086
Gravity is affected by mass and distance