Answer:
164.3g of NaCl
Explanation:
Based on the chemical equation:
CaCl2 + 2NaOH → 2NaCl + Ca(OH)2
<em>where 1 mole of CaCl2 reacts with 2 moles of NaOH</em>
To solve this question we must convert the mass of CaCl2 to moles. Using the chemical equation we can find the moles of NaCl and its mass:
<em>Moles CaCl2 -Molar mass: 110.98g/mol-</em>
156.0g CaCl₂ * (1mol / 110.98g) = 1.4057 moles CaCl2
<em>Moles NaCl:</em>
1.4057 moles CaCl2 * (2mol NaCl / 1mol CaCl2) = 2.811 moles NaCl
<em>Mass NaCl -Molar mass: 58.44g/mol-</em>
2.811 moles NaCl * (58.44g / mol) = 164.3g of NaCl
Answer:
The traditional electrolyte for aluminium electrolysis is based on molten cryolite (Na3AlF6), acting as solvent for the raw material, alumina (Al2O3).Metals are found in ores combined with other elements. Electrolysis can be used to extract a more reactive metal from the ore.
Aluminum can and is used as both anodes and cathodes in electrochemical cells, but there are some peculiarities to using it as an anode in aqueous solutions. As you note, aluminum forms a passivating oxide layer quite readily, even by exposure to atmosphere. In an aqueous solution, if the potential is high enough, OH− and O2− are generated at the anode, which can then react with the aluminum to produce aluminum oxide. Al^3+ can also be generated directly. The electric field will draw the anions through the growing aluminum oxide layer towards the aluminum surface and the Al^3+ towards the solution, making the oxide layer grow both away from the electrode surface and into the surface of the electrode. In this way, coatings thicker than the normal passivation in air can be produced. However, aluminum oxide is a good electrical insulator, thus if a dense non-porous layer is grown, it will become impossible to pass current through it and growth will stop, leaving a relatively thin oxide layer (this is how the dielectric layers in electrolytic capacitors are made). This is the normal behaviour in aqueous solutions at near-neutral pH (5–7).
However, if a thick aluminum oxide layer is desired (e.g. to produce coatings on aluminum parts for dying or durability), maintaining porosity is necessary to avoid completely blocking access to the surface. One technique that is commonly used is using a low pH solution, which tends to redissolve some of the oxide and neutralize some of the formed OH−, leaving pores in the oxide layer through which the ions can travel and continue to react. These pores also give a good structure to retain dyes or lubricants, but generally need to be sealed after to protect against corrosion.
Answer:
249 L
Explanation:
Step 1: Write the balanced equation
C₃H₈(g) + 5 O₂(g) → 3 CO₂(g) + 4 H₂O(g)
Step 2: Calculate the moles of CO₂ produced from 5.00 moles of C₃H₈
The molar ratio of C₃H₈ to CO₂ is 1:3. The moles of CO₂ produced are 3/1 × 5.00 mol = 15.0 mol
Step 3: Convert "30.0°C" to Kelvin
We will use the following expression.
K = °C + 273.15
K = 30.0°C + 273.15 = 303.2 K
Step 4: Calculate the volume of carbon dioxide
We will use the ideal gas equation.
P × V = n × R × T
V = n × R × T/P
V = 15.0 mol × 0.0821 atm.L/mol.K × 303.2 K/1.50 atm
V = 249 L
The number of mole of HCl needed for the solution is 1.035×10¯³ mole
<h3>How to determine the pKa</h3>
We'll begin by calculating the pKa of the solution. This can be obtained as follow:
- Equilibrium constant (Ka) = 2.3×10¯⁵
- pKa =?
pKa = –Log Ka
pKa = –Log 2.3×10¯⁵
pKa = 4.64
<h3>How to determine the molarity of HCl </h3>
- pKa = 4.64
- pH = 6.5
- Molarity of salt [NaZ] = 0.5 M
- Molarity of HCl [HCl] =?
pH = pKa + Log[salt]/[acid]
6.5 = 4.64 + Log[0.5]/[HCl]
Collect like terms
6.5 – 4.64 = Log[0.5]/[HCl]
1.86 = Log[0.5]/[HCl]
Take the anti-log
0.5 / [HCl] = anti-log 1.86
0.5 / [HCl] = 72.44
Cross multiply
0.5 = [HCl] × 72.44
Divide both side by 72.44
[HCl] = 0.5 / 72.4
[HCl] = 0.0069 M
<h3>How to determine the mole of HCl </h3>
- Molarity of HCl = 0.0069 M
- Volume = 150 mL = 150 / 1000 = 0.15 L
Mole = Molarity x Volume
Mole of HCl = 0.0069 × 0.15
Mole of HCl = 1.035×10¯³ mole
<h3>Complete question</h3>
How many moles of HCl need to be added to 150.0 mL of 0.50 M NaZ to have a solution with a pH of 6.50? (Ka of HZ is 2.3 x 10 -5 .) Assume negligible volume of the HCl
Learn more about pH of buffer:
brainly.com/question/21881762