Al(NO3)3(aq) + 3NaOH(s) --> Al(OH)3 (s) + 3NaNO3 (aq)
The precipitate here is Al(OH)3 (s), since the solid reactant is the precipitate in the aqueous solution. Usually, it is okay to assume in basic chemistry that the transition metal is going to be part of the compound that is the precipitate, especially in an acidic salt and a strong base reaction that we have here.
Answer:
All of the above processes have a ΔS < 0.
Explanation:
ΔS represents change in entropy of a system. Entropy refers to the degree of disorderliness of a system.
The question requests us to identify the process that has a negative change of entropy.
carbon dioxide(g) → carbon dioxide(s)
There is a change in state from gas to solid. Solid particles are more ordered than gas particles so this is a negative change in entropy.
water freezes
There is a change in state from liquid to solid. Solid particles are more ordered than liquid particles so this is a negative change in entropy.
propanol (g, at 555 K) → propanol (g, at 400 K)
Temperature is directly proportional to entropy, this means higher temperature leads t higher entropy.
This reaction highlights a drop in temperature which means a negative change in entropy.
methyl alcohol condenses
Condensation is the change in state from gas to liquid. Liquid particles are more ordered than gas particles so this is a negative change in entropy.
Answer:
S + 02= S0 - 4 e- → SIV (oxidation); 2 O0 + 4 e- → 2 O-II (reduction)
C + 02= C
Cu0 + H2SO4= CuO + H2SO4 → CuSO4 + H2O
Answer:
0.0249 moles in 1 g of Ca
Explanation:
Let's think in the molar mass of Ca.
Ca = 40.08 g/mol
So 1 mol weighs 40.08 grams, or in the opposite 40.08 grams is the weigh of 1 mol
The rule of three will be:
40.08 g are contained in 1 mol
1 g may be contained in (1 . 1) / 40.08 = 0.0249 moles