Answer:
The amount of energy liberated will be 49.38 J.
Explanation:
The amount of energy liberated (gibbs free energy) can be calculated using the following equation:
ΔG° = -nFε
n: amount of moles of electrons transfered
F: Faraday's constant
ε: cell potential
20.0 g of Zn is equal to 0.30 mol.
Two electrons are transfered during the reaction.
Therefore, n = 2x0.30 ∴ n = 0.60
ΔG° = - 0.60 x 96.485 x 0.853
ΔG° = 49.38 J
The order of placement of the elemnts on the modern Periodic Table is determinated by:
1)atomic number (Z=number of protons).
<span>a. Tall prarie grass burns after being struck by lightning.</span>
The branch of chemistry that the chemist might use will be the branch of <em>organic chemistry</em>. This is because gasoline is an organic compound. We can say that a compound is organic if it contains a carbon atom. Gasoline is composed of long chains of alkanes (hydrocarbons with single bonds) ranging from 4 carbon atoms to 12 carbon atoms.
Answer:
c. 2NH₃ + 2H₂O + Cu²⁺ → Cu(OH)₂(s) + 2NH₄⁺
Explanation:
A net ionic equation is a chemical equation that list only the species that are involved in the reaction.
The reaction of ammonia with copper(II) sulfate CuSO₄ in water is:
2NH₃ + 2H₂O + CuSO₄ → Cu(OH)₂(s) + 2NH₄⁺ + SO₄²⁻
In an ionic equation, salts are written as ions, that means CuSO₄ must be written as Cu²⁺ + SO₄²⁻. That is:
2NH₃ + 2H₂O + Cu²⁺ +<u> SO₄²⁻</u> → Cu(OH)₂(s) + 2NH₄⁺ + <u>SO₄²⁻</u>
As in a net ionic equation you must list only the species involved in the reaction (The underlined species don't react), the net ionic equation is:
<em>c</em>. <em>2NH₃ + 2H₂O + Cu²⁺ → Cu(OH)₂(s) + 2NH₄⁺</em>
<em></em>
I hope it helps!