Group 1 elements (usually called alkali metals) are not very electronegative and have small ionization energies due to that. The reason why they are not very electronegative is that they really want to loose their one valence electron so that they can have a noble gas electron configuration (completed octet).
I hope this helps.
Answer:
Part A. F + e⁻ → F⁻
Part B. -820 kJ
Part C. -5.45x10⁻²² kJ
Explanation:
Part A
The fluoride anion is formed when fluorine accepts an electron:
F + e⁻ → F⁻
Part B
The electron affinity is the energy necessary for the atom to accept 1 electron, which is exothermic, so it's negative. The total energy q is the electron affinity multiplied by the number of moles:
q = -328 kJ/mol * 2.5 mol
q = -820 kJ
Part C
By the Avogadros' number
1 mol --------- 6.02x10²³ atoms
x --------- 1 atom
By a simple direct three rule:
x = 1.66x10⁻²⁴ mol
So, the energy for 1 atom is:
q = -328 kJ/mol * 1.66x10⁻²⁴ mol
q = -5.45x10⁻²² kJ
Idk becuase i am not in hight school lol sorry i think it is 3
Answer: The correct answer is option B.
Explanation:
Average kinetic energy of the gas molecule is given by relation:

= Avogadro Number
T = Temperature of the gas in Kelvins.
R = Universal gas constant

With increase in temperature the kinetic energy of the gas molecule increases and vice-versa.
So, according to the question the explanation for a drop in temperature of the gas is decrease in average kinetic energy of the gas molecules.
Hence, the correct answer is option B.