Answer:
yeah,The oxidation state of an atom does not represent the "real" charge on that atom, or any other actual atomic property.Hydrogen has OS = +1, but adopts −1 when bonded as a hydride to metals or metalloids. Oxygen in compounds has OS = −2. This set of postulates covers .
Explanation:
This is more of a physics explanation, but here we go.
Mass is a measure of how much "matter" is in an object. Weight is the force applied onto an object by gravity. Weight itself can be related to mass like this:

where g is a gravitational constant. For our purposes, it's defined by whatever planet you are on. Following this, we can demonstrate that mass is NOT the same thing as weight if we take two objects of the same mass and put them on different planets.
Let E refer to Earth and F refer to Mars

Following this, we can see clearly that weight is not the same as mass:

If weight was the same thing as mass, the two values would be the same, as the mass of the two objects is the same. But since weight is defined in the context of gravity, they are not.
Answer : The energy required to melt 58.3 g of solid n-butane is, 4.66 kJ
Explanation :
First we have to calculate the moles of n-butane.

Given:
Molar mass of n-butane = 58.12 g/mole
Mass of n-butane = 58.3 g
Now put all the given values in the above expression, we get:

Now we have to calculate the energy required.

where,
Q = energy required
= enthalpy of fusion of solid n-butane = 4.66 kJ/mol
n = moles = 1.00 mol
Now put all the given values in the above expression, we get:

Thus, the energy required to melt 58.3 g of solid n-butane is, 4.66 kJ
0.116 V is the e value for the oxidation of cytochrome c by the cue redox center in complex iv when the ratio of cyst c (fe3 ) /cyst c (fe2 ) is 20 and the ratio of cue (cu2 )/cue (cu ) is 3.
<h3>
Explain the process of oxidation of cytochrome c.</h3>
When cytochrome c is oxidized by mitochondrial cytochrome oxidase (COX), it attaches to Apaf-1 to produce the apoptozole, which activates pro-caspase-9 and causes cell death. Cyst can be created from cytosolic cytochrome c. In the IMS, oxidized cytochrome c can scavenge superoxide without converting it into H2O2, a process that happens naturally but is accelerated by SOD. The benefit of scavenging superoxide independently of H2O2 synthesis is reducing the possibility of hydroxyl radical generation via the Fenton reaction.
To learn more about the oxidation of cytochrome c, visit:
brainly.com/question/14473523
#SPJ4
Mass number is equal to the number of protons plus the number of neutrons in a nucleus of an atom