Answer:
the magnitude of the velocity of the block just after impact is 2.598 m/s and the original speed of the bullect is 324.76m/s.
Explanation:
a) Kinetic energy of block = potential energy in spring
½ mv² = ½ kx²
Here m stands for combined mass (block + bullet),
which is just 1 kg. Spring constant k is unknown, but you can find it from given data:
k = 0.75 N / 0.25 cm
= 3 N/cm, or 300 N/m.
From the energy equation above, solve for v,
v = v √(k/m)
= 0.15 √(300/1)
= 2.598 m/s.
b) Momentum before impact = momentum after impact.
Since m = 1 kg,
v = 2.598 m/s,
p = 2.598 kg m/s.
This is the same momentum carried by bullet as it strikes the block. Therefore, if u is bullet speed,
u = 2.598 kg m/s / 8 × 10⁻³ kg
= 324.76 m/s.
Hence, the magnitude of the velocity of the block just after impact is 2.598 m/s and the original speed of the bullect is 324.76m/s.
Answer:
electromagnetic waves only
Explanation:
I just took the test, Hope it helps!
Answer:
B
Explanation:
They are all one-dimensional
Given :
Reem took a wire of length 10 cm. Her friend Nain took a wire of 5 cm of the same material and thickness both of them connected with wires as shown in the circuit given in figure. The current flowing in both the circuits is the same.
To Find :
Will the heat produced in both the cases be equal.
Solution :
Heat released is given by :
H = i²Rt
Here, R is resistance and is given by :

So,
Now, in the question every thing is constant except for the length of the wire and from above equation heat is directly proportional to the length of the wire.
So, heat produced by Reem's wire is more than Nain one.
Hence, this is the required solution.