Answer:
I2>I1
Explanation:
This problem can be solved by using the parallel axis theorem. If the axis of rotation of a rigid body (with moment of inertia I1 at its center of mass) is changed, then, the new moment of inertia is gven by:

where M is the mass of the object and d is the distance of the new axis to the axis of the center of mass.
It is clear that I2 is greater than I1 by the contribution of the term Md^2.
I2>I1
hope this helps!!
The tires deflated and so that means that you won’t be able to travel
<span>The moment of inertia of the large sphere will be twice that of the smaller sphere.
The formula for the moment of inertia for a solid sphere is:
I = (2/5)mr^2
where
I = moment of inertia
m = mass
r = radius
Since both spheres have the same diameter, they also have the same radius, so the only change is their mass. And the moment of inertia is directly proportional to their mass as shown by the above formula. So the sphere with twice the mass will have twice the moment of inertia, or 2 times.</span>
Answer:
laws of motion relate an object’s motion to the forces acting on it. In the first law, an object will not change its motion unless a force acts on it. In the second law, the force on an object is equal to its mass times its acceleration. In the third law, when two objects interact, they apply forces to each other of equal magnitude and opposite direction.
They discovered a vaccine to reduce illnesses, specifically Polio and Influenza. The work of Salk and Sabin has almost eradicated what was once a deadly disesase ( polio) . For example, there were 350,000 deaths related to poliovirus across the world in 1988 and they reduced to 22 in 2017. Also, their work has saved millions of lives from polio induced paralysis