True; i<span>onic bonds result from high electronegativity differences</span>
Answer:
B
Explanation:
Chemistry is the study of matter, its composition and the changes it undergoes.
Answer:
The van't hoff factor of 0.500m K₂SO₄ will be highest.
Explanation:
Van't Hoff factor was introduced for better understanding of colligative property of a solution.
By definition it is the ratio of actual number of particles or ions or associated molecules formed when a solute is dissolved to the number of particles expected from the mass dissolved.
a) For NaCl the van't Hoff factor is 2
b) For K₂SO₄ the van't Hoff factor is 3 [it will dissociate to give three ions one sulfate ion and two potassium ions]
Out of 0.500m and 0.050m K₂SO₄, the van't hoff factor of 0.500m K₂SO₄ will be more.
c) The van't Hoff factor for glucose is one as it is a non electrolyte and will not dissociate.
Answer:
Homoanular dienes have a greater base value than heteroanular dienes
Explanation:
Woodward in 1945 gave a set of rules relating the wavelength of maximum absorption to the structure of a compound. These rules were modified by Fieser in 1959. These sets of rules describe the absorption of organic molecules in the UV region of the electromagnetic spectrum.
Each system of diene or triene has a given fixed value at which maximum absorption is expected to occur according to Woodward rules. This given fixed value is called the base or parent value. If the two double bonds are trans to each other, the diene is said to be transoid. If the two double bonds belong to different rings, the system is said to be heteroanular and the base value in each case is 215nm. If the double bonds are cis to each other (cisoid), or the two double bonds are in the same ring (homoanular), then the base value is 253nm.
Since λmax = base value + ∑ substituent contributions + ∑ other contributions, if the other contributions are not very significant, homoanular diene will have a greater λmax because of its larger base value compared to heteroanular diene. This correlates well with the fact that conjugated systems absorb at a longer wavelength.
I think the answer to your question would be D.