1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Musya8 [376]
3 years ago
12

A mountain climber ascends a mountain to its peak. The peak is 12,470 ft above sea level. The climber then descends 80 ft to mee

t a fellow climber. Find the climber's elevation above sea level after meeting the other climber. A. -12,390 ft. B. 12,550 ft. C. 11,670 ft. D. 12,930 ft
Physics
1 answer:
o-na [289]3 years ago
8 0
The answer is 12,390 ft.

At first, a climber is at 12,470 <span>ft above sea level. But then, he goes down 80 ft to meet a fellow climber. So, this simply needs to be distracted:
12,470 ft - 80 ft = 12,390 ft
This is the elevation </span>above sea level at which he meet the other climber.
You might be interested in
A 100-kg tackler moving at a speed of 2.6 m/s meets head-on (and holds on to) an 92-kg halfback moving at a speed of 5.0 m/s. Pa
DIA [1.3K]

Given that,

Mass of trackler, m₁ = 100 kg

Speed of trackler, u₁ = 2.6 m/s

Mass of halfback, m₂ = 92 kg

Speed of halfback, u₂ = -5 m/s (direction is opposite)

To find,

Mutual speed immediately after the collision.

Solution,

The momentum of the system remains conserved in this case. Let v is the mutual speed after the collision. Using conservation of momentum as :

m_1u_1+m_2u_2=(m_1+m_2)V\\\\V=\dfrac{m_1u_1+m_2u_2}{(m_1+m_2)}\\\\V=\dfrac{100\times 2.6+92\times (-5)}{(100+92)}\\\\V=-1.04\ m/s

So, the mutual speed immediately after the collision is 1.04 m/s but in opposite direction.

3 0
4 years ago
A 4-kg object is moving with a speed of 5 m/s at a height of 2 m. The kinetic
tatyana61 [14]

Hello!

\large\boxed{KE = 50J}

Use the formula for kinetic energy:

KE = \frac{1}{2}mv^{2}

Plug in the given mass and velocity:

KE = \frac{1}{2} (4)5^{2}

Simplify:

KE = \frac{1}{2} (100)\\\\KE = 50 J

7 0
3 years ago
A spring gun is made by compressing a spring in a tube and then latching the spring at the compressed position. A 4.97-g pellet
dimaraw [331]

Answer:

v  = 2.8898 \frac{m}{s}

Explanation:

This is a problem easily solve using energy conservation. As there are no non-conservative forces, we know that the energy is conserved.

When the spring is compressed downward, the spring has elastic potential energy. When the spring is relaxed, there is no elastic potential energy, but the pellet will have gained gravitational potential energy and kinetic energy. Lets see what are the terms for each of this.

<h3>Elastic potential energy</h3>

We know that a spring following Hooke's Law has a elastic potential energy:

E_{ep} = \frac{1}{2} k (\Delta x)^2

where \Delta x is the displacement from the relaxed length and k is the spring's constant.

To obtain the spring's constant, we know that Hooke's law states that the force made by the spring is :

\vec{F} = - k \Delta \vec{x}

as we need 9.12 N to compress 4.60 cm, this means:

k = \frac{9.12 \ N}{4.6 \ 10^{-2} \ m}

k = 198.26 \ \frac{ N}{m}

So, the elastic energy of the compressed spring is:

E_{ep} = \frac{1}{2} 198.26 \ \frac{ N}{m} (4.6 \ 10^{-2} \ m)^2

E_{ep} = 0.209759 \ Joules

And when the spring is relaxed, the elastic potential energy will be zero.

<h3>Gravitational potential energy</h3>

To see how much gravitational potential energy will the pellet win, we can use

\Delta E_{gp} = m g \Delta h

where m is the mass of the pellet, g is the acceleration due to gravity and \Delta h is the difference in height.

Taking all this together, the gravitational potential energy when the spring is relaxed will be:

\Delta E_{gp} = 4.97 \ 10^{-3} kg \ 9.8 \frac{m}{s^2} 4.6 \ 10^{-2} m

\Delta E_{gp} = 0.00224 \ Joules

<h3>Kinetic Energy</h3>

We know that the kinetic energy for a mass m moving at speed v is:

E_k = \frac{1}{2} m v^2

so, for the pellet will be

E_k = \frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2

<h3>All together</h3>

By conservation of energy, we know:

E_{ep} = \Delta E_{gp} + E_k

0.209759 \ Joules = 0.00224 \ Joules + \frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2

So

\frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2  = 0.209759 \ Joules - 0.00224 \ Joules

\frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2  = 0.207519 \ Joules

v  = \sqrt{ \frac{ 0.207519 \ Joules}{ \frac{1}{2} \ 4.97 \ 10^{-3} kg } }

v  = 2.8898 \frac{m}{s}

7 0
3 years ago
In practice, if a voltmeter was connected across any combination of the terminals, the potential difference would be less than w
VladimirAG [237]

Answer:

This difference is kept to a minimum because the resistance in transformers is a few tens of ohms and the resistance of modern voltmeters is of the order of MΩ.

Explanation:

A voltmeter is built by a galvanometer and a resistance in series, this set is connected in parallel to the resistance where the voltage is to be measured, therefore the voltage is divided between the voltmeter and the element to be measured, consequently the measured voltage It is less than the calculated one, since for them the resistance of the voltmeter is assumed infinite.

This difference is kept to a minimum because the resistance in transformers is a few tens of ohms and the resistance of modern voltmeters is of the order of MΩ.

8 0
3 years ago
A dog sledding team is composed of a 82.8 kg musher (the person driving the sled), a 21.4 kg sled, and four dogs. Assume that ea
vlabodo [156]

Answer: 340.8W

Explanation: Please see the attachments below

6 0
3 years ago
Read 2 more answers
Other questions:
  • The vector quantity that defines the distance and direction between two positions. It is a change in your position.
    15·1 answer
  • Calculate the hydrostatic difference in blood pressure between the brain and the foot in a person of height 1.93 m. The density
    10·1 answer
  • Which waves cause the medium to vibrate only in a direction parrallel?
    15·2 answers
  • A baseball flying through the air has what kind of energy?
    6·1 answer
  • When time is measured in​ days, the decay constant for a particular radioactive isotope is 0.16. Determine the time required for
    5·2 answers
  • How many millimeter are there in 10 centimeters?
    15·2 answers
  • An ocean wave has a wavelength of 8m and wave frequency of 4 waves/s. what is the wave speed?
    13·1 answer
  • How you could use a graduated cylinder to find the volume of a small rock
    6·1 answer
  • _____reaches the Earth’s surface through ______, then turns into ______.
    5·1 answer
  • Please help! It’s urgent
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!