Answer:
attracting iron and producing a magnetic field
No. A neutron star is the weird remains of a star that blew its outer layers off
in a nova event, and then had enough mass left so that gravity crushed its
electrons into its protons, and then what was left of it shrank down to a sphere
of unimaginably dense neutron soup. But it didn't have enough mass to go
any farther than that.
A black hole is the remains of a star that had enough mass to go even farther
than that. No force in the universe was able to stop it from contracting, so it
kept contracting until its mass occupied no volume ... zero. It became even
more weird, and is composed of a substance that we don't know anything about
and can't describe, and occupies zero volume.
Contrary to popular fairy tales, a black hole doesn't reach out and "suck things in".
It's just so small (zero) that things can get very close to it. You know that gravity
gets stronger as you get closer to an object, so if the object has no size at all, you
can get really really close to it, and THAT's where the gravity gets really strong.
You may weigh, let's say, 100 pounds on the Earth. But you're like 4,000 miles
from the center of the Earth. What if all of the earth's mass was crammed into
the size of a bean. Then you could get 1 inch from it, and at that distance from
the mass of the Earth, you would weigh 25,344,000,000 pounds.
But Earth's mass is not enough to make a black hole. That takes a minimum
of about 3 times the mass of the sun, which is right about 1 million times the
Earth's mass. THEN you can get a lightweight black hole.
Do you see how it works now ?
I know. It all seems too fantastic to be true.
It sure does.
The force on the truck is F=13650 N
<u>Explanation:</u>
Solving the problem
Given data,
M= 1500 kg
A= 9.1 m/s
We have the formula,
F= M×A
F= 1500 × 9.1
F=13650 N
The Force on the truck is F=13650 N
<h2>
Answer:</h2>
400N/m
<h2>
Explanation:</h2>
When n identical springs of stiffness k, are attached in series, the reciprocal of their equivalent stiffness (1 / m) is given by the sum of the reciprocal of their individual stiffnesses. i.e
= ∑ⁿ₁ [
] -----------------------(i)
That is;
=
+
+
+ . . . +
-------------------(ii)
If they have the same value of stiffness say s, then equation (ii) becomes;
= n x
-----------------(iii)
Where;
n = number of springs
From the question,
There are 3 identical springs, each with stiffness of 1200N/m and they are attached in series. This implies that;
n = 3
s = 1200N/m
Now, to calculate the effective stiffness,m, (i.e the stiffness of a longer spring formed from the series combination of these springs), we substitute these values into equation (iii) above as follows;
= 3 x 
= 
= 
Cross multiply;
m = 400N/m
Therefore, the stiffness of the longer spring is 400N/m
Answer:
The magnitude of the acceleration of the boy toward the girl is 
Explanation:
It is given that,
Mass of the boy, 
Mass of the girl, 
The acceleration of the girl toward the boy is, 
To find,
The acceleration of the boy toward the girl.
Solution,
Let
is the magnitude of the acceleration of the boy toward the girl. We know that force acting on one object to other are equal in magnitude but opposite in direction. So,






So, the magnitude of the acceleration of the boy toward the girl is 