Answer:
<h2>480</h2>
Explanation:
<h2>R=120÷0.25</h2><h2>R=480 ohms </h2>
because the unit for resistance is in ohms
<span>The three states of matter are the three distinct physical forms that matter can take in most environments: solid, liquid, and gas. In extreme environments, other states may be present, such as plasma, Bose-Einstein condensates, and neutron stars. Further states, such as quark-gluon plasmas, are also believed to be possible. Much of the atomic matter of the universe is hot plasma in the form of rarefied interstellar medium and dense stars.</span>
A because of the resistors are four in this options first option is multiplied by 4
Wow ! I understand your shock. I shook and vibrated a little
when I looked at this one too.
The reason for our shock is all the extra junk in the question,
put there just to shock and distract us.
"Neutron star", "5.5 solar masses", "condensed burned-out star".
That's all very picturesque, and it excites cosmic fantasies in
out brains when we read it, but it's just malicious decoration.
It only gets in the way, and doesn't help a bit.
The real question is:
What is the acceleration of gravity 2000 m from
the center of a mass of 1.1 x 10³¹ kg ?
Acceleration of gravity is
G · M / R²
= (6.67 x 10⁻¹¹ N·m²/kg²) · (1.1 x 10³¹ kg) / (2000 m)²
= (6.67 x 10⁻¹¹ · 1.1 x 10³¹ / 4 x 10⁶) (N) · m² · kg / kg² · m²
= 1.83 x 10¹⁴ (kg · m / s²) · m² · kg / kg² · m²
= 1.83 x 10¹⁴ m / s²
That's about 1.87 x 10¹³ times the acceleration of gravity on
Earth's surface.
In other words, if I were standing on the surface of that neutron star,
I would weigh 1.82 x 10¹² tons, give or take.