Answer:
The net displacement of the car is 3 km West
Explanation:
Please see the attached drawing to understand the car's trajectory: First in the East direction for 4 km (indicated by the green arrow that starts at the origin (zero), and stops at position 4 on the right (East).
Then from that position, it moves back towards the West going over its initial path, it goes through the origin and continues for 3 more km completing a moving to the West a total of 7 km. This is indicated in the drawing with an orange trace that end in position 3 to the left (West) of zero.
So, its NET displacement considered from the point of departure (origin at zero) to the final point where the trip ended, is 3 km to the west.
I think that the answer is A
#1
As we know that

now plug in all data into this


now from the formula of strain




#2
As we know that
pressure * area = Force
here we know that


now force is given as

#3
As we know that density of water will vary with the height as given below

here we know that


now density is given as


#4
as we know that pressure changes with depth as per following equation

here we know that

now we will have



here we will have

so it is 20.1 m below the surface
#5
Here net buoyancy force due to water and oil will balance the weight of the block
so here we will have




so it is 3.48 cm below the interface
Polar regions do not receive direct sunlight during the winter months due to the tilt in the Earth's<span> axis. Hence, polar regions can get very cold. Antarctica is the </span>coldest place on Earth. <span>The </span>coldest places on Earth<span> tend to be located </span>near the poles<span>. Hope this answers the question.</span>