1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
wariber [46]
3 years ago
10

a student uses a simple machine to help lift a load.when 40N of input force is applied to the machine it is able to lift 160N .w

hat is the mechanical advantage of the machine
Physics
1 answer:
Akimi4 [234]3 years ago
3 0

4 to 1

Explanation If you look at it as a fraction 160/40 and you reduce it down as far as you can you get 4/1

You might be interested in
Halogen is most likely to react to what
arsen [322]
Halogens therefore react most vigorously with Group 1 and Group 2 metals of all main group elements.
4 0
3 years ago
Match the major muscle group with its functional role.
Naily [24]

Answer:

Abdominal

Sitting up, postural alignment

Biceps

Lifting, pulling

Deltoids

Overhead lifting

Erector Spinae

Postural alignment

Gastronemius & Soleus

Push off for walking, standing on tiptoes

Gluteus

Climbing stairs, walking, standing up

Hamstrings

Walking

Latissimus Dorsi & Rhomboids

Postural alignment, pulling open a door

Obliques

Rotation and side flexion of body

Pectoralis

Push up, pull up, bench press

Quadriceps

Climbing stairs, walking, standing up

Trapezius

Moves head sideways

Triceps

Pushing

God bless you. Because my soul almost left my body when i had to do this.

7 0
3 years ago
A stretched string has a mass per unit length of 5.40 g/cm and a tension of 17.5 N. A sinusoidal wave on this string has an ampl
kondaur [170]

Answer:

Part a)

y_m = 0.157 mm

part b)

k = 101.8 rad/m

Part c)

\omega = 579.3 rad/s

Part d)

here since wave is moving in negative direction so the sign of \omega must be positive

Explanation:

As we know that the speed of wave in string is given by

v = \sqrt{\frac{T}{m/L}}

so we have

T = 17.5 N

m/L = 5.4 g/cm = 0.54 kg/m

now we have

v = \sqrt{\frac{17.5}{0.54}}

v = 5.69 m/s

now we have

Part a)

y_m = amplitude of wave

y_m = 0.157 mm

part b)

k = \frac{\omega}{v}

here we know that

\omega = 2\pi f

\omega = 2\pi(92.2) = 579.3 rad/s

so we  have

k = \frac{579.3}{5.69}

k = 101.8 rad/m

Part c)

\omega = 579.3 rad/s

Part d)

here since wave is moving in negative direction so the sign of \omega must be positive

4 0
4 years ago
Help my in science state of matter
Arada [10]
I would say the last option, since with an increase in temperature, water molecules will speed up.
7 0
3 years ago
Read 2 more answers
Suppose that the height of the incline is h = 14.7 m. Find the speed at the bottom for each of the following objects. 1.solid sp
tensa zangetsu [6.8K]

Answer:

1. 14.4 m/s  2. 13.2 m/s 3. 12.0 m/s 4. 13.9 m/s

Explanation:  

Assuming no friction present, the different objects roll without slipping, so there is a constant relationship between linear and angular velocity, as follows:

ω= v/r

If no friction exists, the change in total kinetic energy must be equal in magnitude to the change in the gravitational potential energy:

∆K = -∆U

 ½ *m*v² + ½* I* ω²  = m*g*h

Simplifying and replacing the value of the angular velocity:

½ * v² + ½ I *(v/r)² = g*h (1)

In order to answer the question, we just need to replace h by the value given, and I (moment of inertia) for the value for each different object, as follows:

  •  Solid Sphere I = 2/5* m *r²

                Replacing in (1):

                ½ * v² + ½ (2/5 *m*r²) *(v/r)² = g*h

                Replacing by the value given for h, and solving for v:

                v = √(10/7*9.8 m/s2*14.7 m)  = 14. 4 m/s

  • Spherical shell I=2/3*m*r²

                Replacing in (1):

                ½ * v² + ½ (2/3 *m*r²) *(v/r)² = g*h

                Replacing by the value given for h, and solving for v:

                v = √(6/5*9.8 m/s2*14.7 m)  = 13.2 m/s

  • Hoop   I= m*r²

                Replacing in (1):

                ½ * v² + ½ (m*r²) *(v/r)² = g*h

               Replacing by the value given for h, and solving for v:

               v = √(9.8 m/s2*14.7 m)  = 12.0 m/s

  • Cylinder I = 1/2 * m* r²

                 Replacing in (1):

                ½ * v² + ½ (1/2 *m*r²) *(v/r)²= g*h

                 Replacing by the value given for h, and solving for v:

                v = 2*√(1/3*9.8 m/s2*14.7 m)  = 13.9 m/s

5 0
4 years ago
Other questions:
  • Once the magma found at location "E" cools and crystalizes, it will
    6·1 answer
  • A truck accelerates at 5m/s2. Find the truck's mass if the driver applies a force of 425N(can you also show free diagram)?
    8·2 answers
  • What is the acceleration?
    7·1 answer
  • Traditional Indonesian music uses an ensemble called a gamelan that is based on tuned percussion instruments somewhat like gongs
    15·1 answer
  • Wings of a bird what kind of motion is it
    6·1 answer
  • Objects fall at constant velocity
    12·2 answers
  • What is the momentum of a 5 kg object that has a velocity of 1.2 m/s? 3.8 kg • m/s 4.2 kg • m/s 6.0 kg • m/s 6.2 kg • m/s
    13·2 answers
  • Identify the medium for ocean waves
    14·1 answer
  • When iron pipes come in contact with water and oxygen, iron transfers electrons to the oxygen molecules. Which
    8·1 answer
  • In a photovoltaic system, an inverter is required to:.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!