Answer:
11
Explanation:
1. You are going to be rounding down.
2. change the metric ton to kg.
1.000 * 10^3 kg = 1000 kg
1000 / 87 = 11.49 = 11 people
Answer:
3.06m/s² to the east
Explanation:
Given parameters:
Mass of car = 2.5 x 10³kg
Force acting on the car = 7.65 x 10³N
Unknown:
Acceleration of the car = ?
Solution:
From Newton's second law of motion:
Force = mass x acceleration
Acceleration =
=
= 3.06m/s² to the east
Answer: C)The yellow car was faster. Yellow traveled at a speed of 50 mph while green was traveling at an average of 40 mph.
Explanation:
The speed of each car is defined as:

where d is the distance traveled by the car and t is the time taken.
For the yellow car, d=400 mi and t=8 h, so its speed is

For the green car, d=400 mi and t=10 h, so its speed is

So, the correct choice is
C)The yellow car was faster. Yellow traveled at a speed of 50 mph while green was traveling at an average of 40 mph.
Two major characteristics that change when air is heated and cooled is the density and the direction of the air flow. They change the movement of the air by heated air rises and cooled air doesn't.
Answer:
128 m
Explanation:
From the question given above, the following data were obtained:
Horizontal velocity (u) = 40 m/s
Height (h) = 50 m
Acceleration due to gravity (g) = 9.8 m/s²
Horizontal distance (s) =?
Next, we shall determine the time taken for the package to get to the ground.
This can be obtained as follow:
Height (h) = 50 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
50 = ½ × 9.8 × t²
50 = 4.9 × t²
Divide both side by 4.9
t² = 50 / 4.9
t² = 10.2
Take the square root of both side
t = √10.2
t = 3.2 s
Finally, we shall determine where the package lands by calculating the horizontal distance travelled by the package after being dropped from the plane. This can be obtained as follow:
Horizontal velocity (u) = 40 m/s
Time (t) = 3.2 s
Horizontal distance (s) =?
s = ut
s = 40 × 3.2
s = 128 m
Therefore, the package will land at 128 m relative to the plane