Answer:
The correct option is 2 .
Therefore ,the missing denominator of the solution. 4 plus or minus the square root of 2, all over is <u> 2 . </u>
![x=\dfrac{4\pm\sqrt{2}}{2}](https://tex.z-dn.net/?f=x%3D%5Cdfrac%7B4%5Cpm%5Csqrt%7B2%7D%7D%7B2%7D)
Step-by-step explanation:
For a Quadratic Equation ax² + bx + c = 0
By Formula Method we get
![x=\dfrac{-b\pm\sqrt{b^{2}-4ac}}{2a}](https://tex.z-dn.net/?f=x%3D%5Cdfrac%7B-b%5Cpm%5Csqrt%7Bb%5E%7B2%7D-4ac%7D%7D%7B2a%7D)
So we have Quadratic Equation is 2x² - 8x + 7 = 0
On Comparing we get
![a=2\\b=-8\\c=7](https://tex.z-dn.net/?f=a%3D2%5C%5Cb%3D-8%5C%5Cc%3D7)
Substituting a , b, c values we get
![x=\dfrac{-(-8)\pm\sqrt{(-8)^{2}-4(2)(7)}}{2(2)}\\\\x=\dfrac{8\pm\sqrt{64-56}}{4}\\\\x=\dfrac{8\pm\sqrt{8}}{4}\\\\x=\dfrac{8\pm2\sqrt{2}}{4}\\\\x=2(\dfrac{4\pm\sqrt{2}}{4})\\\\x=\dfrac{4\pm\sqrt{2}}{2}](https://tex.z-dn.net/?f=x%3D%5Cdfrac%7B-%28-8%29%5Cpm%5Csqrt%7B%28-8%29%5E%7B2%7D-4%282%29%287%29%7D%7D%7B2%282%29%7D%5C%5C%5C%5Cx%3D%5Cdfrac%7B8%5Cpm%5Csqrt%7B64-56%7D%7D%7B4%7D%5C%5C%5C%5Cx%3D%5Cdfrac%7B8%5Cpm%5Csqrt%7B8%7D%7D%7B4%7D%5C%5C%5C%5Cx%3D%5Cdfrac%7B8%5Cpm2%5Csqrt%7B2%7D%7D%7B4%7D%5C%5C%5C%5Cx%3D2%28%5Cdfrac%7B4%5Cpm%5Csqrt%7B2%7D%7D%7B4%7D%29%5C%5C%5C%5Cx%3D%5Cdfrac%7B4%5Cpm%5Csqrt%7B2%7D%7D%7B2%7D)
Therefore ,the missing denominator of the solution. 4 plus or minus the square root of 2, all over is <u> 2 . </u>