- 4 - 4 + 4 ÷ 4
- 4 ÷ 4 + 4 ÷ 4
- (4 + 4 + 4) ÷ 4
- √4 + √4 + 4 - 4
- √4 + 4 + 4 ÷ 4
- √4 + 4 + 4 - 4
- 4 + 4 - 4 ÷ 4
- 4 + 4 + 4 - 4
- 4 + 4 + 4 ÷ 4
- √4 + √4 + √4 + 4
- 44/(√4 + √4)
- √4 + √4 + 4 + 4
- 44/4 + 4
- 4 + 4 + 4 + √4
- 44/4 + 4
- 4 * 4 * 4 ÷ 4
- 4 * 4 + 4 ÷ 4
- 4 * 4 - √4 + 4
- 4! - 4 - 4 ÷ 4
- 4 * (4 + 4 ÷ 4)
- 4! - 4 + 4 ÷ 4
- 4 * 4 + 4 + √4
- 4! - √4 + 4/4
- 4 * (√4 + √4 + √4)
- 4! + √2 - 4 ÷ 4
- 4! + √4 + 4 - 4
- 4! + √4 + 4 ÷ 4
- 4! + 4 + 4 - 4
- 4! + 4 + 4 ÷ 4
- 4! + √4 + √4 + √4
Lol, that took a while, hope it helps!
280 is the answer
______________________________________
Answer:
FIRST EXPRESSION:
- If
, the value of
is 
- If
, the value of
is 
- If
, the value of
is 
SECOND EXPRESSION:
- If
, the value of
is 
- If
, the value of
is 
- If
, the value of
is 
Yes, for any value of "b" the value of the first expression is greater than the value of the second expression.
Step-by-step explanation:
Substitute the given values of "b" into each expression and evaluate.
- For the first expression
, you get:
If
→ 
If
→ 
If
→ 
- For the second expression
, you get:
If
→ 
If
→ 
If
→ 
You can observe that for any value of "b" the value of the first expression is greater than the value of the second expression.
Its 30 . hope this helps u