Answer:
Dx = -0.5
Dy = -0.25
Explanation:
Two vectors are given in rectangular components form as follows:
A = i + 6j
B = 3i - 7j
It is also given that:
A - B - 4D = 0
so, we solve this to find D vector:
(i + 6j) - (3i - 7j) - 4D = 0
- 2i - j = 4D
D = - (2/4)i - (1/4)j
D = - (1/2)i - (1/4)j
<u>D = - 0.5i - 0.25j</u>
Therefore,
<u>Dx = -0.5</u>
<u>Dy = -0.25</u>
Answer:
v = 0
Explanation:
This problem can be solved by taking into account:
- The equation for the calculation of the period in a spring-masss system
( 1 )
- The equation for the velocity of a simple harmonic motion
( 2 )
where m is the mass of the block, k is the spring constant, A is the amplitude (in this case A = 14 cm) and v is the velocity of the block
Hence

and by reeplacing it in ( 2 ):

In this case for 0.9 s the velocity is zero, that is, the block is in a position with the max displacement from the equilibrium.
Answer:
Explanation:
When the number of slits increases, the intensity of fringes increases.
So, the fringes appear to be more bright.
As we know that the fringe width is inversely proportional to the number of slits, so as the number of slits increases, the fringe width decreases, hence the fringes are narrower, bright and close together.
Answer:
Tension in the supporting cable is = 4,866 N ≅4.9 KN
Explanation:
First of all, we need to understand that tension is a force, so the motion law
F = Ma applies perfectly.
From Newtons third law of motion, action and reaction are equal and opposite. This means that the force experienced by the elevator, is equal to the tension experienced by the spring.
Parameters given:
Mass of load = 1650 kg
Acceleration of load = ?
The acceleration of the load can be obtained by diving the change in velocity by the time taken. But we need to know the time taken for the motion to 41 m.
Time taken = distance covered / velocity
=
= 3.73 seconds
∴Acceleration = ( initial velocity - final velocity )/ time taken
Note: Final velocity is = 0 since the body came to a rest.
Acceleration =
= 2.95m/
Force acting on the cable = mass of elevator × acceleration of elevator
= 1650 × 2.95 = 4869.5 kg ≅ 4.9 KN
Unless the ring by design will have restriction for any outward expansion. The hole will get larger / bigger as you heat this up. The more you heat an object the more it expands, thus the larger the hole gets. The only case is when outward expansion is restricted, the expansion will be inward as it is the only direction the ring can expand to.