Answer:
It looks yellow because that is the only (major) color reflected.
Visible spectra is from about 4000-7000 Angstroms (10^-10 m).
Red are longer wavelengths and blue are the shorter wavelengths.
The Sodium doublet (yellow) occurs around 5900 Angstroms.
Answer:
The height is : 60.025 m
Explanation:
The flowerpot falls off the balcony with zero launch angle
Given the time of fright as 3.5 s then ;
The formula to apply is ;

3.5²= 2H/9.8
12.25 =2H/9.8
12.25 * 9.8 = 2H
120.05 = 2H
120.05/2 = H
60.025 =H
Answer:
Explanation:
Since the roundabout is rotating with uniform velocity ,
input power = frictional power
frictional power = 2.5 kW
frictional torque x angular velocity = 2.5 kW
frictional torque x .47 = 2.5 kW
frictional torque = 2.5 / .47 kN .m
= 5.32 kN . m
= 5 kN.m
b )
When power is switched off , it will decelerate because of frictional torque .
Answer:
The minimum possible coefficient of static friction between the tires and the ground is 0.64.
Explanation:
if the μ is the coefficient of static friction and R is radius of the curve and v is the speed of the car then, one thing we know is that along the curve, the frictional force, f will be equal to the centripedal force, Fc and this relation is :
Fc = f
m×(v^2)/(R) = μ×m×g
(v^2)/(R) = g×μ
μ = (v^2)/(R×g)
= ((25)^2)/((100)×(9.8))
= 0.64
Therefore, the minimum possible coefficient of static friction between the tires and the ground is 0.64.
Answer:
The wavelength can always be determined by measuring the distance between any two corresponding points on adjacent waves. In the case of a longitudinal wave, a wavelength measurement is made by measuring the distance from a compression to the next compression or from a rarefaction to the next rarefaction.
Explanation: