Answer:
![[SO_2Cl_2]=0.0175M](https://tex.z-dn.net/?f=%5BSO_2Cl_2%5D%3D0.0175M)
Explanation:
Hello!
In this case, considering that the decomposition reaction of SO2Cl2 is first-order, we can write the rate law shown below:
![r=-k[SO_2Cl_2]](https://tex.z-dn.net/?f=r%3D-k%5BSO_2Cl_2%5D)
We also consider that the integrated rate law has been already reported as:
![[SO_2Cl_2]=[SO_2Cl_2]_0exp(-kt)](https://tex.z-dn.net/?f=%5BSO_2Cl_2%5D%3D%5BSO_2Cl_2%5D_0exp%28-kt%29)
Thus, by plugging in the initial concentration, rate constant and elapsed time we obtain:
![[SO_2Cl_2]=0.0225Mexp(-2.90x10^{-4}s^{-1}*865s)](https://tex.z-dn.net/?f=%5BSO_2Cl_2%5D%3D0.0225Mexp%28-2.90x10%5E%7B-4%7Ds%5E%7B-1%7D%2A865s%29)
![[SO_2Cl_2]=0.0175M](https://tex.z-dn.net/?f=%5BSO_2Cl_2%5D%3D0.0175M)
Best regards!
Combustion reactions release energy in the form of heat.
Hope this helps and tell me if you need more help!
<span>Scientists ignore the forces of attraction between particles in a gas under ordinary conditions</span><span> because the particles in a gas are apart and moving fast, rather than clustered and moving slow, therefore the forces of attraction are too weak to have a visible effect.</span>
Answer:- 13.6 L
Solution:- Volume of hydrogen gas at 58.7 Kpa is given as 23.5 L. It asks to calculate the volume of hydrogen gas at STP that is standard temperature and pressure. Since the problem does not talk about the original temperature so we would assume the constant temperature. So, it is Boyle's law.
Standard pressure is 1 atm that is 101.325 Kpa.
Boyle's law equation is:

From given information:-
= 58.7 Kpa
= 23.5 L
= 101.325 Kpa
= ?
Let's plug in the values and solve it for final volume.

On rearranging the equation for 

= 13.6 L
So, the volume of hydrogen gas at STP for the given information is 13.6 L.
Answer:
D.
Explanation:
Deciding whether the best product has been designed,should be the last step.