Answer: The osmotic pressure of a solution is 53.05 atm
Explanation:
To calculate the concentration of solute, we use the equation for osmotic pressure, which is:

Or,

where,
= osmotic pressure of the solution = ?
i = Van't hoff factor = 1 (for non-electrolytes)
Mass of solute (methanol) = 22.3 g
Volume of solution = 321 mL
R = Gas constant = 
T = temperature of the solution = ![25^oC=[273+25]=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B273%2B25%5D%3D298K)
Putting values in above equation, we get:


Hence, the osmotic pressure of a solution is 53.05 atm
We can skip option B and D because NaCl is salt and H₂SO₄ is a strong acid.
Neutralization reactions are those reactions in which acid and base react to form salt and water.
As water being amphoteric in nature can react with HCl as follow,
HCl + H₂O ⇆ H₃O⁺ + OH⁻
In this case no salt is formed, so we can skip this option.
Ammonia being a weak base can abstract proton from HCl as follow,
HCl + NH₃ → NH₄Cl
Ammonium Chloride is a salt. So, among all four options, Option-C is the correct answer.
Answer:
It's because removal of electron from an atom, reduces the size of an atom.
Explanation:
When an electron is removed from an atom, it becomes an ion and in this case it will become a postive ion.
When an electron is removed from an atom, the charge balance of an atom is disturbed and positive charge increases in comparison to the negative charge. This results in increase nuclear (positive) charge which exerts greater attraction on the remaining electrons and as a result the remaining electrons are more strongly attracted by the nucleus and in this way the atomic size is decreased. Due to this increased nuclear attraction and reduced atomic size, it bcomes difficult to remove more electeon from the positively charged ion of reduced size. This is the reason that each successive ionization of electron requires a greater amount of energy.
The ionization energy has inverse relation with the size or radius of an atom. This also justifies the reason that why each successive ionization of an electron requires greater amount of energy.