Answer:
hi! I'm pretty sure your answer is solvent!
Explanation:
not 100% sure but I looked it up on google. solvent does the dissolving, solute is what is being dissolved, and a solution is the solvent + the solute. hope this helped!
Answer: Option (b) is the correct answer.
Explanation:
Kinetic energy is defined as the energy obtained by the molecules of an object due to their motion.
Also, it is known that kinetic energy is directly proportional to temperature.
Mathematically, K.E = 
where, T = temperature
Whereas potential energy is defined as the energy obtained by an object due to its position.
Mathematically, P.E = mgh
where, m = mass
g = acceleration due to gravity
h = height
Therefore, in the given curve when temperature remains constant then kinetic energy of molecules will also remain.
Hence, we can conclude that the segment QR represents an increase in the potential energy, but no change in the kinetic energy.
Answer:
The mixing of two chemicals may result in the production of a gas which is lost to the air. This will reduce the mass of the chemical mixture, because mass is being lost in a gaseous form.
Galvanometer:
its an instrument for detecting small electric currents.
Electric motor:
its an electrical machine that converts electrical energy into mechanical energy.
Answer:
The concentration of CH₃OH in equilibrium is [CH₃OH] = <em>2,8x10⁻¹ M</em>
Explanation:
For the equilibrium:
CO (g) + 2H₂(g) ⇄ CH₃OH(g) keq= 14,5
Thus:
14,5 = ![\frac{[CH_{3}OH]}{[CO][H_{2}]^2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BCH_%7B3%7DOH%5D%7D%7B%5BCO%5D%5BH_%7B2%7D%5D%5E2%7D)
In equilibrium, as [CO] is 0,15M and [H₂] is 0,36M:
14,5 = ![\frac{[CH_{3}OH]}{[0,15][0,36]^2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BCH_%7B3%7DOH%5D%7D%7B%5B0%2C15%5D%5B0%2C36%5D%5E2%7D)
Solving, the concentration of CH₃OH in equilibrium is:
<em>[CH₃OH] = 0,28M ≡ 2,8x10⁻¹ M</em>
I hope it helps!