Vinegar is the only thing listed
Answer:
2.7 × 10⁻⁴ bar
Explanation:
Let's consider the following reaction at equilibrium.
SbCl₅(g) ⇄ SbCl₃(g) + Cl₂(g)
The pressure equilibrium constant (Kp) is 3.5 × 10⁻⁴. We can use these data and the partial pressures at equilibrium of SbCl₅ and SbCl₃, to find the partial pressure at equilibrium of Cl₂.
Kp = pSbCl₃ × pCl₂ / pSbCl₅
pCl₂ = Kp × pSbCl₅ / pSbCl₃
pCl₂ = 3.5 × 10⁻⁴ × 0.17 / 0.22
pCl₂ = 2.7 × 10⁻⁴ bar
Answer:
the mesopelagic, dysphotic, or twilight zone
Explanation:
Marine zones are the divisions of the ocean. The ocean is divided into two basic parts; the pelagic or open ocean, and the benthic or sea floor.
The pelagic zone is further divided into five broad zones according to how far down sunlight penetrates and they are:
1) the epipelagic, euphotic, or sunlit zone: the top layer of the ocean where enough sunlight penetrates for plants to carry on photosynthesis.
2) the mesopelagic, dysphotic, or twilight zone: a dim zone where some light penetrates, but not enough for plants to grow.
3) the bathypelagic, aphotic, or midnight zone: the deep ocean layer where no light penetrates.
4) the abyssal zone: the pitch-black bottom layer of the ocean; the water here is almost freezing and its pressure is immense.
5) the hadal zone: the waters found in the ocean's deepest trenches.
If the substance mixes with water it's polar. If it doesn't it ms non polar.
The three of them have the same amount of electrons, so we can’t determine the right one on that ground. As you might know, Pauli said that electrons are always in the position of the lowest energy. So the first situation is impossible because there is a free place available that takes less energy. Then the 3rd situation is nor possible because if one electron has a different spin than the others, there is a magnetic obstruction that be prevented if the spin changes. This means that the second situation is the right one.