From the calculation, the molar mass of the solution is 141 g/mol.
<h3>What is the molar mass?</h3>
We know that;
ΔT = K m i
K = the freezing constant
m = molality of the solution
i = the Van't Hoft factor
The molality of the solution is obtained from;
m = ΔT/K i
m = 3.89/5.12 * 1
m = 0.76 m
Now;
0.76 = 26.7 /MM/0.250
0.76 = 26.7 /0.250MM
0.76 * 0.250MM = 26.7
MM= 26.7/0.76 * 0.250
MM = 141 g/mol
Learn more about molar mass:brainly.com/question/12127540?
#SPJ12
They’re less reactive, they don’t react quickly with water or oxygen which they resist corrosion.
Answer : true
The answer is A, between 0 and 7.
In a pH scale from 0 to 14, we can groups these numbers into acidic, neutral, and alkaline. 7 is the neutral pH value, therefore, 0-7 is always acidic, and 7-14 is alkaline.
The smaller the number is, the more acidic the solution will be. This applies same in alkalis, the larger the pH value is, the more alkaline the solution is.
We can measure the pH of solution with many methods, the easiest way include using a pH paper, more advanced and accurate methods includes using a pH meter.
If iron has a density of 7.87g/cm³ and a mass of 3.729g, then the volume of iron is 0.474cm³
HOW TO CALCULATE VOLUME:
- The volume of a substance can be calculated by dividing the mass by its density. That is;
Volume (mL) = mass (g) ÷ density (g/mL)
- The density of iron is given as 7.87g/cm³ while its mass is 3.729g of iron. Hence, the volume can be calculated as follows:
Volume = 3.729 ÷ 7.87
Volume = 0.474cm³
Therefore, the volume of iron is 0.474cm³
Learn more: brainly.com/question/2040396?referrer=searchResults
Ice caps so it would be D
Hope it helps :-)