I would say C bc I don’t rlly think it’s A or B
Answer:
6.4 L
Explanation:
When all other variables are held constant, you can use Boyle's Law to find the missing volume:
P₁V₁ = P₂V₂
In this equation, "P₁" and "V₁" represent the initial pressure and volume. "P₂" and "V₂" represent the final pressure and volume. You can find the theoretical volume by plugging the given values into the equation and simplifying.
P₁ = 3.2 atm P₂ = 1.0 atm
V₁ = 2.0 L V₂ = ? L
P₁V₁ = P₂V₂ <----- Boyle's Law
(3.2 atm)(2.0 L) = (1.0 atm)V₂ <----- Insert values
6.4 = (1.0 atm)V₂ <----- Simplify left side
6.4 = V₂ <----- Divide both sides by 1.0
The density of a rectangle : ρ = 0.372 g/cm³
<h3>Further explanation</h3>
Given
The volume of rectangle : 395 cm³
Mass : 147 g
Required
The density
Solution
Density is a quantity derived from the mass and volume
Density is the ratio of mass per unit volume
Density formula:
ρ = density
m = mass
v = volume
Input the value :
ρ = 147 g : 395 cm³
ρ = 0.372 g/cm³
Answer:
No
Explanation:
The same amount of matter is present before and after chemical and physical changes. Matter cannot be created or destroyed
Answer:
9.36
Explanation:
Sodium formate is the conjugate base of formic acid.
Also,

for sodium formate is 
Given that:
of formic acid = 
And, 
So,


Concentration = 0.35 M
HCOONa ⇒ Na⁺ + HCOO⁻
Consider the ICE take for the formate ion as:
HCOO⁻ + H₂O ⇄ HCOOH + OH⁻
At t=0 0.35 - -
At t =equilibrium (0.35-x) x x
The expression for dissociation constant of sodium formate is:
![K_{b}=\frac {[OH^-][HCOOH]}{[HCOO^-]}](https://tex.z-dn.net/?f=K_%7Bb%7D%3D%5Cfrac%20%7B%5BOH%5E-%5D%5BHCOOH%5D%7D%7B%5BHCOO%5E-%5D%7D)

Solving for x, we get:
x = 0.44×10⁻⁵ M
pOH = -log[OH⁻] = -log(0.44×10⁻⁵) = 4.64
pH + pOH = 14
So,
<u>pH = 14 - 4.64 = 9.36</u>