Answer:
ΔH = +155.6 kJ
Explanation:
The Hess' Law states that the enthalpy of the overall reaction is the sum of the enthalpy of the step reactions. To do the addition of the reaction, we first must reorganize them, to disappear with the intermediaries (substances that are not presented in the overall reaction).
If the reaction is inverted, the signal of the enthalpy changes, and if its multiplied by a constant, the enthalpy must be multiplied by the same constant. Thus:
N₂(g) + O₂(g) → 2NO(g) ΔH = +180.7 kJ
2NO(g) + O₂(g) → 2NO₂(g) ΔH = -113.1 kJ
2N₂O(g) → 2N₂(g) + O₂(g) ΔH = -163.2 kJ
The intermediares are N₂ and O₂, thus, reorganizing the reactions:
N₂(g) + O₂(g) → 2NO(g) ΔH = +180.7 kJ
NO₂(g) → NO(g) + (1/2)O₂(g) ΔH = +56.55 kJ (inverted and multiplied by 1/2)
N₂O(g) → N₂(g) + (1/2)O₂(g) ΔH = -81.6 kJ (multiplied by 1/2)
------------------------------------------------------------------------------------
N₂O(g) + NO₂(g) → 3NO(g)
ΔH = +180.7 + 56.55 - 81.6
ΔH = +155.6 kJ