The Daphne Major is located in the Colon Archipelago. It has a crater composed of volcanic rocks. These rocks are made up from volcanic ashes which hardened over time. The volcano is shaped like a cone which is surrounded by trees and houses several rare birds.
The correct answer is option B. X-rays are the waves found in the electromagnetic spectrum at a wavelength of 1x10^-11 - 1x10^-8 m and frequencies of 3x10^16 to 3x10^19 Hz. These waves penetrate easily through certain materials which made them usefule in the field of medicine.
Molar mass H₂SO₄ = 98.079 g/mol
1 mol -------- 98.079 g
? mole ------ 0.0960 g
moles = 0.0960 * 1 / 98.079
= 0.0960 / 98.079
= 9.788 x 10⁻⁴ moles
hope this helps!
<h3><u>Full Question:</u></h3>
The following compound has been found effective in treating pain and inflammation (J. Med. Chem. 2007, 4222). Which sequence correctly ranks each carbonyl group in order of increasing reactivity toward nucleophilic addition?
A) 1 < 2 < 3
B) 2 < 3 < 1
C) 3 < 1 < 2
D) 1 < 3 < 2
<h3><u>Answer: </u></h3>
The rate of nucleophilic attack of carbonyl compounds is 2<3 <1.
Option B
<h3><u>Explanation. </u></h3>
Nucleophilic attack is explained as the attack of an electron rich radical to a carbonyl compound like aldehyde or a ketone. A nucleophile has a high electron density, so it searches for a electropositive atom where it can donate a portion of its electron density and become stable.
A carbonyl compound is a
hybridized carbon atom with a double bonded oxygen atom in it. The oxygen atom pulls a huge portion of electron density from carbon being very electropositive.
In a ketone, there are two factors that make it less likely to undergo a nucleophilic attack than aldehyde. Firstly, the steric hindrance of two carbon groups being attached with the carbonyl carbon makes it harder for the nucleophile to approach. Secondly, the electron push by the carbon groups attached makes the carbonyl carbon a bit less electropositive than the aldehyde one. So aldehydes are more reactive towards a nucleophilic addition reaction.
12 thousandth is the same as 0.012, so to put something in scientific notation you move the decimal point to the left or right until it is between the first two numbers. So:
Moving the decimal for 0.012 to between the first two numbers, we get: 1.2
For every move of the decimal place to get there, we divide/multiply by 10 each time. In this case, we multiply by 10 each time.
To get to 1.2, we had to move the decimal 2 times, so the answer is 1.2×10^-2
When you move the decimal to the right, the value of the power is negative, and when you move it to the left it is positive.