T is amount after time t
<span>Ao is initial amount </span>
<span>t is time </span>
<span>HL is half life </span>
<span>log (At) = log [ Ao x (1/2)^(t/HL) ] </span>
<span>log (At) = log Ao + log (1/2)^(t/HL) </span>
<span>log (At) = log Ao + (t/HL) x log (1/2) </span>
<span>( log At - log Ao) / log (1/2) = t / HL </span>
<span>log (At/Ao) / log (1/2) = t / HL </span>
<span>HL = t / [( log (At / Ao)) / log (1/2) ] </span>
<span>HL = 14.4 s / [ ( log (12.5 / 50) / log (1/2) ] </span>
<span>HL = 14.4 s / 2 = 7.2 seconds </span>
<u>Answer: </u>The correct answer is Option B.
<u>Explanation:</u>
First law of thermodynamics states that the energy can neither be destroyed not be formed but it can only be transformed from one form to another.
Here, the internal energy of the system is being transformed to the heat energy and the work done by the system. The equation used to represent first law of thermodynamic is:

where,
represents the internal energy of the system.
Q = heat released or absorbed by the system.
w = work done by or on the system.
Hence, the correct answer is Option B.
Explanation: it is formed by large number of glucose<span> molecules joined to each other , then when cell need it is digested to produce </span>glucose<span> to be consumed by the cell to produce energy.</span>
Answer:
5.158 × 10²³ atoms K
General Formulas and Concepts:
<u>Chemistry - Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
Explanation:
<u>Step 1: Define</u>
33.49 g K
<u>Step 2: Identify Conversions</u>
Avogadro's Number
Molar Mass of K - 39.10 g/mol
<u>Step 3: Convert</u>
<u />
= 5.15797 × 10²³ atoms K
<u>Step 4: Check</u>
<em>We are given 4 sig figs. Follow sig figs and round.</em>
5.15797 × 10²³ atoms K ≈ 5.158 × 10²³ atoms K
Answer:
Mass of carbon = 236.5 g
Explanation:
Given data:
Mass of C₃H₆ = 275 g
Mass of C = ?
Solution:
Formula:
Mass of carbon = molar mass of carbon/ molar mass of compound × mass of compound
Molar mass of carbon = 12 g/mol
Molar mass of compound = 42 g/mol
Mass of carbon = 36 g/mol / 42 g/mol × 275 g
Mass of carbon = 0.86 × 275 g
Mass of carbon = 236.5 g