Correct answer: B
Cooling curve is the plot of temperature versus time as the sample is allowed to cool. In a cooling curve, we start at a temperature greater than the boiling point. At this temperature, the sample is in gaseous state. At the boiling point, there is no change in temperature as the gaseous and liquid states are in equilibrium. As the temperature reduces further, the liquid starts to condense and at the melting point of the sample the liquid undergoes phase transition to solid state. At the melting temperature, a second plateau is observed as the temperature remains unchanged. At temperatures below the melting point, the sample exists as a solid.
So from the curve, the second plateau is observed at around -111
. This point represents the phase transition from liquid to solid state.
Answer:
A complex ion contains a central metal ion bound to one or more ligands
Explanation:
A complex ion is consists of a central atom or ion, that is usually metallic, called the coordination centre, and a surrounding array of bound molecules or ions, that are in turn known as ligands or complexing agents.
An example of a complex ion is
[Co(NH3)6]3+
Please go through the attached file for a proper representation of the complex ion.
If the concentration of water inside a cell is higher than the concentration of water outside a cell, osmosis will take place, as water will move from an area of low solute concentration inside the cell to higher solute concentration, outside the cell.
Lol it literally says that he covered the distance in three seconds so I believe it would be three
PH is defined as the negative log of Hydrogen ion concentration. Mathematically we can write this as:
![pH=-log[H^{+}]=-log[H_{3}O]](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%7B%2B%7D%5D%3D-log%5BH_%7B3%7DO%5D%20%20)
We are given the concentration of

. Using the value in formula, we get:
Therefore, the pH of the solution will be 3.745