0.078 times the orbital radius r of the earth around our sun is the exoplanet's orbital radius around its sun.
Answer: Option B
<u>Explanation:</u>
Given that planet is revolving around the earth so from the statement of centrifugal force, we know that any

The orbit’s period is given by,

Where,
= Earth’s period
= planet’s period
= sun’s mass
= earth’s radius
Now,

As, planet mass is equal to 0.7 times the sun mass, so

Taking the ratios of both equation, we get,





Given
and 


Eaither D or A bit I am leaning more towards D
Answer:
Explanation:
a ) The volume of blood flowing per second throughout the vessel is constant .
a₁ v₁ = a₂ v₂
a₁ and a₂ are cross sectional area at two places of vessel and v₁ and v₂ are velocity of blood at these places .
2A x v₁ = A x .40
v₁ = .20 m /s
b )
Let normal pressure be P₁ when cross sectional area is 2A and at cross sectional area A , pressure is P₂
Applying Bernoulli's theorem
P₁ + 1/2 ρv₁² = P₂ + 1/2 ρv₂²
P₁ - P₂ = 1/2 ρ(v₂² - v₁² )
= .5 x 1060 ( .4² - .2² )
= 63.6 Pa .
Well, wind can change landforms by storms, and hurricains, or other things that contain air...
~~~~~~~~~~~~~
Like, over a period of time... Wind can make landforms decrease in size, by weathering.
~~~~~~~~~~~~~~
Hope this helps! :)