1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gnoma [55]
3 years ago
10

Consider a cylinder of height h, diameter d, and wall thickness t pressurized to an internal pressure P_0 (gauge pressure, relat

ive to the external atmospheric pressure). The cylinder consists of material with Young's modulus E, Poisson's ratio v, and density rho. Derive expressions for the axial and hoop strains of the cylinder wall in terms of the can dimensions, properties, and internal pressure. You may assume plane stress conditions.
Continuing on Problem 1, assume a strain gage is bonded to the cylinder wall surface in the direction of the axial strain. The strain gage has nominal resistance R_0 and a Gage Factor GF. It is connected in a Wheatstone bridge configuration where all resistors have the same nominal resistance: the bridge has an input voltage V_in. (The strain gage is bonded and the Wheatstone bridge balanced with the vessel already pressurized.) Develop an expression for the voltage change delta V across the bridge if the cylinder pressure changes by delta P.

Repeat Problem 2, but now assuming the strain gage is bonded to the cylinder wall surface in the direction of the hoop strain. Does the voltage change more when the strain gage is oriented in the axial or hoop direction?

Continuing on Problem 3 (strain gage in the hoop direction), calculate the voltage change delta V across the Wheatstone bridge when the cylinder pressure increases by 1 atm. Assume the vessel is made of aluminum 3004 with height h = 10.5 cm, diameter d = 5.5 cm, and thickness t = 50 mu m. The Gage Factor is GF = 2 and the Wheatstone bridge has V_in = 6 V. The strain gage has nominal resistance R_0 = R_4 = 120 ohm.
Engineering
1 answer:
Serggg [28]3 years ago
3 0

Explanation:

Note: For equations refer the attached document!

The net upward pressure force per unit height p*D must be balanced by the downward tensile force per unit height 2T, a force that can also be expressed as a stress, σhoop, times area 2t. Equating and solving for σh gives:

 Eq 1

Similarly, the axial stress σaxial can be calculated by dividing the total force on the end of the can, pA=pπ(D/2)2 by the cross sectional area of the wall, πDt, giving:

Eq 2

For a flat sheet in biaxial tension, the strain in a given direction such as the ‘hoop’ tangential direction is given by the following constitutive relation - with Young’s modulus E and Poisson’s ratio ν:

 Eq 3

 

Finally, solving for unknown pressure as a function of hoop strain:

 Eq 4

 

Resistance of a conductor of length L, cross-sectional area A, and resistivity ρ is

 Eq 5

Consequently, a small differential change in ΔR/R can be expressed as

 Eq 6

Where ΔL/L is longitudinal strain ε, and ΔA/A is –2νε where ν is the Poisson’s ratio of the resistive material. Substitution and factoring out ε from the right hand side leaves

 Eq 7

Where Δρ/ρε can be considered nearly constant, and thus the parenthetical term effectively becomes a single constant, the gage factor, GF

 Eq 8

For Wheat stone bridge:

 Eq 9

Given that R1=R3=R4=Ro, and R2 (the strain gage) = Ro + ΔR, substituting into equation above:

Eq9

Substituting e with respective stress-strain relation

Eq 10

 

part b

Since, axial strain(1-2v) < hoop strain (2-v). V out axial < V out hoop.

Hence, dV hoop < dV axial.

part c  

Given data:

P = 253313 Pa

D = d + 2t = 0.09013 m

t = 65 um

GF = 2

E = 75 GPa

v = 0.33

Use the data above and compute Vout using Eq3

Eq 11  

Download docx
You might be interested in
The seers were of the opinion that_____ . *
AURORKA [14]

Answer:

✔️a healthy mind resides in a healthy body.

Explanation:

The seers were of the opinion that "a healthy mind resides in a healthy body."

Just like the English translation of a famous quotation from Thales, pre-Socratic Greek philosopher puts it "a sound mind in a sound body"; which tries to demonstrate the close connections that exists in bodily well-being and one's ability to enjoy life.

The seers were actually of the opinion that a healthy mind resides in a healthy body. It implies that there is connection between the body and the mind. When the body catches an illness, the mind and other parts of the body are affected. When our minds are not healthy, it affects the effective functioning of the body.

So, a healthy mind will definitely be found in a healthy body.

4 0
3 years ago
Calculate the areas under the stress-strain curve (toughness) for the materials shown in Fig. below, (a) plot them as a
defon

Answer:

Explanation:

Wow

5 0
3 years ago
An angle is observed repeatedly using the same equipment and procedures producing the data below:35 ∘ 40'00",35 ∘ 40'10",35 ∘ 40
Helen [10]

Answer: (a) +/- 7.5° (b) +/- 3.75°

Explanation:

See attachment

6 0
3 years ago
If gain of the critically damped system is increased, the system will behave as a) Under damped b) Over damped c) Critically dam
Ganezh [65]

Answer:

a) Under damped

Explanation:

Given that system is critically damped .And we have to find out the condition when gain is increased.

As we know that damping ratio given as follows

\zeta =\dfrac{C}{C_c}

Where C is the damping coefficient and Cc is the critical damping coefficient.

C_c=2\sqrt{mK}

So from above we can say that

\zeta =\dfrac{C}{2\sqrt{mK}}

\zeta \alpha \dfrac{1}{\sqrt K}

From above relationship we can say when gain (K) is increases then system will become under damped system.

7 0
3 years ago
g A heat exchanger is designed to is to heat 2,500 kg/h of water from 15 to 80 °C by engine oil. The configuration of the heat e
sergey [27]

Answer:

See explaination

Explanation:

Please kindly check attachment for the step by step solution of the given problem.

The attached file gave a detailed solution of the problem.

8 0
3 years ago
Other questions:
  • Which statement about tensile stress is true? A. Forces that act perpendicular to the surface and pull an object apart exert a t
    9·1 answer
  • Primary Creep: slope (creep rate) decreases with time
    10·1 answer
  • 8–21 Heat in the amount of 100 kJ is transferred directly from a hot reservoir at 1200 K to a cold reservoir at 600 K. Calculate
    6·1 answer
  • An n- channel enhancement- mode MOSFET with 50 nm thick HfO2 high- k gate dielectric (Pr = 25) has a flat band voltage of 0.5 V,
    5·1 answer
  • Two parts are to be assembled in a way that if one part fails, the entire assembly fails. Each of the parts have undergone exten
    15·1 answer
  • Fill in the blank to output the quotient of dividing 100 by 42. print (100______42)​
    8·1 answer
  • HI! If you love the art that is good. My teacher Mrs. Armstrong is the best paintings ever year. Come to Mountain View Elementar
    10·2 answers
  • Safety-in engineering as with everything else is all about trying to maximize or create the hazards involved with what you are d
    6·2 answers
  • "Transformer is used to change the voltage".
    5·1 answer
  • Which option identifies the free resource Judi can use in the following scenario?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!