Answer:
1.324 × 10⁷ m
Explanation:
The centripetal acceleration, a at that height above the earth equal the acceleration due to gravity, g' at that height, h.
Let R be the radius of the orbit where R = RE + h, RE = radius of earth = 6.4 × 10⁶ m.
We know a = Rω² and g' = GME/R² where ω = angular speed = 2π/T where T = period of rotation = 1 day = 8.64 × 10⁴s (since the shuttle's period is synchronized with that of the Earth's rotation), G = gravitational constant = 6.67 × 10⁻¹¹ Nm²/kg², ME = mass of earth = 6 × 10²⁴ kg. Since a = g', we have
Rω² = GME/R²
R(2π/T)² = GME/R²
R³ = GME(T/2π)²
R = ∛(GME)(T/2π)²
RE + h = ∛(GMET²/4π²)
h = ∛(GMET²/4π²) - RE
substituting the values of the variables, we have
h = ∛(6.67 × 10⁻¹¹ Nm²/kg² × 6 × 10²⁴ kg × (8.64 × 10⁴s)²/4π²) - 6.4 × 10⁶ m
h = ∛(2,987,477 × 10²⁰/4π² Nm²s²/kg) - 6.4 × 10⁶ m
h = ∛75.67 × 10²⁰ m³ - 6.4 × 10⁶ m
h = ∛(7567 × 10¹⁸ m³) - 6.4 × 10⁶ m
h = 19.64 × 10⁶ m - 6.4 × 10⁶ m
h = 13.24 × 10⁶ m
h = 1.324 × 10⁷ m
<span>The answer is simply that evolution takes a long time to make big changes. To see evidence of that, you have to look at older records. You have to look at fossils.</span>
Since this is in parallel circuit, if one bulb goes bad the brightness of the other bulbs should remain the same. The overall current did decrease but the resistance also decreased.
First you need to find out how many kilometers it travels for 60 minutes:
15km*60minutes = 900 Kilometers
Then you divide the distance traveled in one hour by 12 :
900kilometers/12minutes = 75km/h or 47mph