Explanation:
We have,
According to attached figure, the height of the inclined plane is 60 m and force acting on the block is 10 N. It is required to find the work must be done against gravity to move it to the top of the incline. The work done is given by :
W = mgh
or

Hence, the correct option is (A) "600 J".
According to Newton's 3rd law, there will be equal and opposite force on the astronaut which is -6048 N
<h3>
What does Newton's third law say ?</h3>
The law state that in every action, there will be equal and opposite reaction.
Given that a rocket takes off from Earth's surface, accelerating straight up at 69.2 m/s2. We are to calculate the normal force (in N) acting on an astronaut of mass 87.4 kg, including his space suit.
Let us first calculate the force involved in the acceleration of the rocket by using the formula
F = ma
Where mass m = 87.4 kg, acceleration a = 69.2 m/s2
Substitute the two parameters into the formula
F = 87.4 x 69.2
F = 6048.08 N
According to the Newton's 3rd law, there will be equal and opposite force on the astronaut.
Therefore, the normal force acting on the astronaut is -6048 N approximately
Learn more about forces here: brainly.com/question/12970081
#SPJ1
Answer:
35%
Explanation:
Given data
Amount of energy transferred (Input) = 270J
Amount of energy converted to sound (Output)= 94.5J
Efficiency = output/input*100
Efficiency= 94.5/270*100
Efficiency=0.35*100
Efficiency=35%
Hence the efficiency is 35%
The wavelength of a wave (λ) is given by λ

where c is the wave speed and f is the frequency