<span>The radioactive uranium decays into its daughter product, lead. It would do this in magma as well, as nuclear decay depends on forces within the atom, not on the phase of the material in which the atom is a part.</span>
Before starting, we will convert all the givens into standard units as follows:
1.8 * 10^14 KJ/sec = 1.8 * 10^14 * 1000 = 1.8 * 10^17 J/sec
24 hours = 24 * 60 * 60 = 86400 second
Now, we are given that:
The earth receives 1.8 * 10^17 J/sec. We will begin by calculating the total energy received by the earth in 24-hours
Total energy = 1.8 * 10^17 * 86400 = 1.5552 * 10^22 Joules
Then we will get the mass from the following rule:
E = m * c^2 where:
E is the total energy = 1.5552 * 10^22 Joules
m is the mass we need to find
c is the speed of light = 3 * 10^8 m/sec
Substitute with the givens to get the mass as follows:
1.5552 * 10^22 = m * (3*10^8)^2
m = 172800 kg
Answer:
The atomic mass of phosphorus is 29.864 amu.
Explanation:
Given data:
Atomic mass of phosphorus = ?
Percent abundance of P-29 = 35.5%
percent abundance of P-30 = 42.6%
Percent abundance of P-31 = 21.9%
Solution:
Average atomic mass = (abundance of 1st isotope × its atomic mass) +(abundance of 2nd isotope × its atomic mass) + (abundance of 3rd isotope × its atomic mass / 100
Average atomic mass = (29×35.5)+(30×42.6) + (31×21.9) /100
Average atomic mass = 1029.5 + 1278 + 678.9/ 100
Average atomic mass = 2986.4 / 100
Average atomic mass = 29.864 amu.
The atomic mass of phosphorus is 29.864 amu.
If the object has an irregular shape, the volume can be measured using a displacement can. The displacement can is filled with water above a narrow spout and allowed to drain until the water is level with the tap. As the irregular object is lowered into the displacement can, the water level rises.