For the Lewis diagram of the cyanide ion, a
figure is shown.<span>
There are 3 pairs of bonding electrons. There is a
one lone pair each for the carbon and the nitrogen atoms.</span>
<span>I hope I was able to answer your question. Thank
you!</span>
Cell wall, chloroplasts, plasmodesmata,
Answer:
For these types of questions the equation that we must take into account is that:
T = PxV (where T is the temperature, P is the pressure and V is the volume) this equation is described as we consider that this is the value N and R is 1, therefore it is not necessary to explain them now.
Explanation:
The quoted equation refers to Boyle's Law, in this law we can explain that the volume increases if the pressure decreases and if the temperature also increases, if the pressure increases and the volume decreases this means that the gas is compressing assuming that the temperature is constant
Answer:
A. 0.000128 M is the solubility of M(OH)2 in pure water.
B.
is the solubility of
in a 0.202 M solution of
.
Explanation:
A
Solubility product of generic metal hydroxide = 

S 2S
The expression of a solubility product is given by :
![K_{sp}=[M^{2+}][OH^-]^2](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BM%5E%7B2%2B%7D%5D%5BOH%5E-%5D%5E2)

Solving for S:

0.000128 M is the solubility of M(OH)2 in pure water
B
Concentration of
= 0.202 M
Solubility product of generic metal hydroxide = 

S 2S
So, ![[M^{2+}]=0.202 M+S](https://tex.z-dn.net/?f=%5BM%5E%7B2%2B%7D%5D%3D0.202%20M%2BS)
The expression of a solubility product is given by :
![K_{sp}=[M^{2+}][OH^-]^2](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BM%5E%7B2%2B%7D%5D%5BOH%5E-%5D%5E2)

Solving for S:

is the solubility of
in a 0.202 M solution of
.
Answer:
ethylene glycol (molar mass = 62.07 g/mol).
Explanation:
- We can solve this problem using the relation:
<em>ΔTf = Kf.m,</em>
ΔTf is the depression in the freezing point of tert-Butyl alcohol (ΔTf = freezing point of pure solvent - freezing point in presence of unknown liquid = 25.5°C - 15.3°C = 10.2°C).
Kf is the molal freezing point constant of tert-Butyl alcohol (Kf = 9.1 °C/m).
m is the molality of unknown liquid.
∵ ΔTf = Kf.m
<em>∴ m = ΔTf/Kf </em>= (10.2°C)/(9.1 °C/m) = <em>1.121 m.</em>
- We need to calculate the molar mass of the unknown liquid:
Molality (m) is the no. of moles of solute in 1.0 kg of solvent.
∴ m = (mass/molar mass) of unknown liquid/(mass of tert-Butyl alcohol (kg))
m = 1.121 m, mass of unknown liquid = 0.807 g, mass of tert-Butyl alcohol = 11.6 g = 0.0116 kg.
<em>∴ molar mass of unknown liquid = (mass of unknown liquid)/(m)(mass of tert-Butyl alcohol (kg)) </em>= (0.807 g)/(1.121 m)(0.0116 kg) = <em>62.06 g/mol.</em>
<em></em>
- So, the unknown liquid is:
<em>ethylene glycol (molar mass = 62.07 g/mol).</em>