1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ArbitrLikvidat [17]
3 years ago
10

Chloroform, CHCl3, was once used as an anesthetic. In spy movies it is the liquid put in handkerchiefs to render victims unconsc

ious. Its vapor pressure is 197 mmHg at 23 degrees C and 448 mmHg at 45 degrees
c. Estimate its

a. heat of vaporization
b. normal boiling point I calculated the heat of vaporization to be 29.3 kJ/mol. I'm having some trouble figuring out the normal boiling point, however. I know that the normal boiling point is when, at 1 atm, a liquid boils at a temperature at which its vapor pressure is equal to the pressure above its surface. So P1=P2=1 atm, if P1= vapor pressure and P2= atmospheric pressure/pressure above surface. I figured I could plug this into PV=nRT and solve, but I'm not given a lot of information. I considered assigning arbitrary values for n and V, so I would have
T= (1.00 atm)(1.00 L)/(1.00 moles)(.08206) but is that really the best way to do this problem, or would it even work at all?
I would think you could use the Clausius-Clapeyron equation, just as you did for delta H vap, but this time one of the Ps will be 760 mm and calculate T for that P.
Thank you, that makes sense, but how do I account for P2 and T2 in the equation if I don't know those values either?
But you have two vapor pressures at two temperatures. I would pick 23 C (change to Kelvin, of course) and 197 mm for T1 and P1. Then 760 mm and T2 for the others. You have all of the other numbers. Check my thinking.
oh, of course, I had completely forgotten about that. Thank you.
Chemistry
2 answers:
PSYCHO15rus [73]3 years ago
8 0

Answer:

a. \Delta H_{vap} = 29222.56 J/mol

b. normal boiling point: 61 C

Explanation:

Data

T_1 = 23\, C = 296 K

T_2 = 45\, C = 318 K

P_1 = 197\, mm Hg

P_2 = 448\,mm Hg

R = 8.314 J/mol K, universal gas constant

\Delta H_{vap}: heat of vaporization  

From Clausius-Clapeyron equation:

ln\frac{P_1}{P_2} = \frac{-\Delta H_{vap}}{R} (\frac{1}{T_1} - \frac{1}{T_2})

ln\frac{197}{448} = \frac{-\Delta H_{vap}}{8.314} (\frac{1}{296} - \frac{1}{318})

-0.8215 = \frac{-\Delta H_{vap}}{8.314} (\frac{11}{47064})

\Delta H_{vap} = 0.8215 \times 8.314 \times \frac{47064}{11}

\Delta H_{vap} = 29222.56 J/mol

We can use this result to compute the normal boiling point as follows:

ln\frac{197}{760} = \frac{-29222.56}{8.314} (\frac{1}{296} - \frac{1}{T_2})

-1.35 \times \frac{8.314}{-29222.56 = (\frac{1}{296} - \frac{1}{T_2})

\frac{1}{T_2} = \frac{1}{296} -3.84\cdot 10^{-4}

T_2 = (3 \cdot 10^{-3})^{-1}

T_2 = 334\, K = 61\, C

kirza4 [7]3 years ago
7 0

a. Using the Clausius-Clapeyron equation
ln P1/P2 = (-Hvap / R) (1/T1 - 1/T2)
P1 = 197 mm Hg
P2 = 448 mm Hg
T1 = 23 C = 296 K
T2 = 45 C = 318 K
R = 8.314 J/mol-K
Solving for Hvap
Hvap = <span>29225.43 J/mol

b. For normal boiling point
</span>P1 = 197 mm Hg
P2 = 760 mm Hg (normal pressure)
T1 = 23 C = 296 K
T2 = ?
R = 8.314 J/mol-K
Hvap = 29225.43 J/mol
ln P1/P2 = (-Hvap / R) (1/T1 - 1/T2)
Use the equation to solve for T2
You might be interested in
Melting water is an example of a physical change because (3 points)
ladessa [460]
The water changes state.
3 0
3 years ago
PLEASE HELP 20 POINTS What is a key event found in CO2 and glucose?
irina [24]

the answer is carbon

5 0
3 years ago
My teacher is being weird about it?? every answer i put is wrong someone please help
Kruka [31]
Answer is 146. G/mol
7 0
3 years ago
How is oxygen different than neon explain your answer
lora16 [44]
Oxygen and neon are both elements. Oxygen has 8 electrons and 8 protons. Neon has 10 electrons and 10 protons. Oxygen is also a non-metal element and Neon is a noble gas.
5 0
3 years ago
How many moles of NH3 can be produced from 12.0 mol of H2 and excess N2? Express your answer numerically in moles. View Availabl
VladimirAG [237]

Answer:

A) 8.00 mol NH₃

B) 137 g NH₃

C) 2.30 g H₂

D) 1.53 x 10²⁰ molecules NH₃

Explanation:

Let us consider the balanced equation:

N₂(g) + 3 H₂(g) ⇄ 2 NH₃(g)

Part A

3 moles of H₂ form 2 moles of NH₃. So, for 12.0 moles of H₂:

12.0molH_{2}.\frac{2molNH_{3}}{3molH_{2}} =8.00molNH_{3}

Part B:

1 mole of N₂ forms 2 moles of NH₃. And each mole of NH₃ has a mass of 17.0 g (molar mass). So, for 4.04 moles of N₂:

4.04molN_{2}.\frac{2molNH_{3}}{1molN_{2}} .\frac{17.0gNH_{3}}{1molNH_{3}} =137gNH_{3}

Part C:

According to the <em>balanced equation</em> 6.00 g of H₂ form 34.0 g of NH₃. So, for 13.02g of NH₃:

13.02gNH_{3}.\frac{6.00gH_{2}}{34.0gNH_{3}} =2.30gH_{2}

Part D:

6.00 g of H₂ form 2 moles of NH₃. An each mole of NH₃ has 6.02 x 10²³ molecules of NH₃ (Avogadro number). So, for 7.62×10⁻⁴ g of H₂:

7.62 \times 10^{-4} gH_{2}.\frac{2molNH_{3}}{6.00gH_{2}} .\frac{6.02\times 10^{23}moleculesNH_{3}  }{1molNH_{3}}=1.53\times10^{20}moleculesNH_{3}

3 0
4 years ago
Other questions:
  • What trend in ionization do you see going up and down?
    15·1 answer
  • How can a prairie dog cause physical weathering
    6·2 answers
  • How does phosphorus enter the human body?
    11·1 answer
  • What causes liquids to conduct electricity?
    9·1 answer
  • How much energy is evolved during the formation of 98.7 g of Fe, according to the reaction below? Fe2O3(s) + 2 Al(s) → Al2O3(s)
    14·1 answer
  • Which ion below is present in greatest concentration in a basic (alkaline) solution
    15·2 answers
  • Is this an alpha or beta decay?
    12·1 answer
  • Calculate the number of moles of MgF2 that dissolved.
    11·1 answer
  • What is the molar mass of Ca(NO3)2?
    10·1 answer
  • Describe a simple experiment that can be perfomed in tha laboratory to demonstrate the formation of iron3chloride from iron fill
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!